• Title/Summary/Keyword: Scavenger enzyme

Search Result 51, Processing Time 0.036 seconds

Association of Paraoxonase-1(Q192R and L55M) Gene Polymorphisms and Activity with Colorectal Cancer and Effect of Surgical Intervention

  • Ahmed, Nagwa S.;Shafik, Noha M.;Elraheem, Omar Abd;Abou-Elnoeman, Saad-Eldin A.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.803-809
    • /
    • 2015
  • Background: Colorectal cancer (CRC) is a leading cause of cancer-related death. Oxidative DNA damage may contribute to cancer risk and the antioxidant paraoxonase is one endogenous free radical scavenger in the human body which could therefore exert an influeence. Purpose: Aim of this study was to determine the role of serum arylesterase (ARE) and paraoxonase 1(PON1) activities in CRC patients and to find any association between (PON1) Q192R and L55M gene polymorphisms in CRC patients. Also the serum ARE and PON1 activities in CRC patients will be investigated before and after surgery Materials and Methods: This study involved a total of 50 patients with newly diagnosed CRC and 80 healthy controls. PON1 and ARE activities were determined using an enzymatic spectrophotometric method. PON1 Q192R and L55M gene polymorphisms were determined using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) based restriction fragment analysis. The restriction enzyme AlwI was used to examine the Q192R polymorphism and Hsp92II for the L55M polymorphism. Results: Significant differences in the PON1 Q192R polymorphism were found between patients and controls. The Q allele was more frequent in the patient group than in controls, while the R allele was more frequent in the controls. Significant differences were found in the L55M polymorphism. Additionally, there were significant differences in L and M allele frequencies (p=0.001). The serum activities of PON1 and ARE were low in QQ and MM genotype. Conclusions: serum PON1 and ARE activities were significantly lower in CRC patients compared to healthy subjects. The R allele may protect against colorectal cancer.

Effect of Nitric Oxide on Paraquat-Tolerance in Lettuce Leaves (상추잎의 Paraquat 내성에 미치는 Nitric oxide의 영향)

  • Lee, Jee-Na;Hong, Jung-Hee
    • Journal of Environmental Science International
    • /
    • v.20 no.12
    • /
    • pp.1509-1519
    • /
    • 2011
  • The protective effect of nitric oxide (NO) on the antioxidant system under paraquat(PQ) stress was investigated in leaves of 8-week-old lettuce (Lactuca sativa L.) plants. PQ stress caused a decrease of leaf growth including leaf length, width and weight. Application of NO donor, sodium nitroprusside (SNP), significantly alleviated PQ stress induced growth suppression. SNP permitted the survival of more green leaf tissue preventing chlorophyll content reduction and of higher quantum yield for photosystem II than in non-treated controls under PQ exposure, suggesting that NO has protective effect on chloroplast membrane in lettuce leaves. Flavonoids and anthocyanin were significantly accumulated in the leaves upon PQ exposure. However, the rapid increase of these compounds was alleviated in the SNP treated leaves. PQ treatment resulted in lipid peroxidation and induced accumulation of hydrogen peroxide ($H_2O_2$) in the leaves, while SNP prevented PQ induced increase in malondialdehyde (MDA) and $H_2O_2$. These results demonstrate that SNP serves as an antioxidant agent able to scavenge $H_2O_2$ to protect plant cells from oxidative damage. The activities of two antioxidant enzymes that scavenge reactive oxygen species, superoxide dismutase (SOD) and catalase (CAT) in lettuce leaves in the presence of NO donor under PQ stress were higher than those under PQ stress alone. Application of 2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), a specific NO scavenger, to the lettuce leaves arrested SNP mediated protective effect on leaf growth, photosynthetic pigment and antioxidant systems. However, PTIO had little effect on lettuce leaves under PQ stress compared with that of PQ stress alone. The obtained data suggest that the damage caused by PQ stress is in part due to increased generation of active oxygen by maintaining increased antioxidant enzyme activities and SNP protects plants from oxidative stress. From these results it is suggested that NO might act as a signal in activating active oxygen scavenging system that protects plants from oxidative damage induced by PQ stress and thus confer PQ tolerance.

Peroxiredoxin I participates in the protection of reactive oxygen species-mediated cellular senescence

  • Park, Young-Ho;Kim, Hyun-Sun;Lee, Jong-Hee;Cho, Seon-A;Kim, Jin-Man;Oh, Goo Taeg;Kang, Sang Won;Kim, Sun-Uk;Yu, Dae-Yeul
    • BMB Reports
    • /
    • v.50 no.10
    • /
    • pp.528-533
    • /
    • 2017
  • Peroxiredoxin I (Prx I) plays an important role as a reactive oxygen species (ROS) scavenger in protecting and maintaining cellular homeostasis; however, the underlying mechanisms are not well understood. Here, we identified a critical role of Prx I in protecting cells against ROS-mediated cellular senescence by suppression of $p16^{INK4a}$ expression. Compared to wild-type mouse embryonic fibroblasts (WT-MEFs), Prx $I^{-/-}$ MEFs exhibited senescence-associated phenotypes. Moreover, the aged Prx $I^{-/-}$ mice showed an increased number of cells with senescence associated-${\beta}$-galactosidase (SA-${\beta}$-gal) activity in a variety of tissues. Increased ROS levels and SA-${\beta}$-gal activity, and reduction of chemical antioxidant in Prx $I^{-/-}$ MEF further supported an essential role of Prx I peroxidase activity in cellular senescence that is mediated by oxidative stress. The up-regulation of $p16^{INK4a}$ expression in Prx $I^{-/-}$ and suppression by overexpression of Prx I indicate that Prx I possibly modulate cellular senescence through $ROS/p16^{INK4a}$ pathway.

Review on the Potential Therapeutic Roles of Nigella sativa in the Treatment of Patients with Cancer: Involvement of Apoptosis - Black cumin and cancer -

  • Mollazadeh, Hamid;Afshari, Amir R.;Hosseinzadeh, Hossein
    • Journal of Pharmacopuncture
    • /
    • v.20 no.3
    • /
    • pp.158-172
    • /
    • 2017
  • Nigella sativa (N. sativa, family Ranunculaceae) is a medicinal plant that has been widely used for centuries throughout the world as a natural remedy. A wide range of chemical compounds found in N. sativa expresses its vast therapeutic effects. Thymoquinone (TQ) is the main component (up to 50%) in the essential oil of N. sativa. Also, pinene (up to 15%), p-cymene (40%), thymohydroquinone (THQ), thymol (THY), and dithymoquinone (DTQ) are other pharmacologically active compounds of its oil. Other terpenoid compounds, such as carvacrol, carvone, 4-terpineol, limonenes, and citronellol, are also found in small quantities in its oil. The main pharmacological characteristics of this plant are immune system stimulatory, anti-inflammatory, hypotensive, hepatoprotective, antioxidant, anti-cancer, hypoglycemic, anti-tussive, milk production, uricosuric, choleretic, anti-fertility, and spasmolytic properties. In this regard, we have searched the scientific databases PubMed, Web of Science, and Google Scholar with keywords of N. sativa, anti-cancer, apoptotic effect, antitumor, antioxidant, and malignancy over the period from 2000 to 2017. The effectiveness of N. sativa against cancer in the blood system, kidneys, lungs, prostate, liver, and breast and on many malignant cell lines has been shown in many studies, but the molecular mechanisms behind that anti-cancer role are still not clearly understood. From among the many effects of N. sativa, including its anti-proliferative effect, cell cycle arrest, apoptosis induction, ROS generation, anti-metastasis/anti-angiogenesis effects, Akt pathway control, modulation of multiple molecular targets, including p53, p73, STAT-3, PTEN, and $PPAR-{\gamma}$, and activation of caspases, the main suggestive anti-cancer mechanisms of N. sativa are its free radical scavenger activity and the preservation of various anti-oxidant enzyme activities, such as glutathione peroxidase, catalase, and glutathione-S-transferase. In this review, we highlight the molecular mechanisms of apoptosis and the anti-cancer effects of N. sativa, with a focus on its molecular targets in apoptosis pathways.

Isolation and Identification of an Antioxidant Enzyme Catalase Stimulatory Compound from Garnoderma lucidum

  • Lee, Hyeon-Yong;Eum, Won-Sik;Kim, Dae-Won;Lee, Byung-Ryong;Yoon, Chang-Sik;Jang, Sang-Ho;Choi, Hee-Soon;Choi, Soo-Hyun;Baek, Nam-In;Kang, Jung-Hoon;Kang, Tae-Cheon;Won, Moo-Ho;Cho, Sung-Woo;Lee, Kil-Soo;Park, Jin-Seu;Choi, Soo-Young
    • BMB Reports
    • /
    • v.36 no.5
    • /
    • pp.450-455
    • /
    • 2003
  • Antioxidant enzymes are scavenger reactive-oxygen intermediates and are involved in many cellular defense systems. We previously reported that a crude extract of Garnoderma lucidum, a medicinally potent mushroom, profoundly increased the catalase gene expression and enzyme activities in mouse livers (Park et al., J. Biochem. Mol. Biol. 34. 144-149, 2001). In this study, we elucidated the detailed mechanism whereby G. lucidum stimulates the catalase activity and expression. The major active fraction was isolated from G. lucidum and methyl linoleate was considered the most major component of the fraction. In order to determine whether methyl linoleate increases mRNA and protein synthesis of catalase, Northern and Western blot analyses were performed in vivo with methyl linoleate-treated mouse liver homogenate after feeding methyl linoleate to the mice. Northern and Western blot analyses of the crude liver homogenates in the mice that were administered methyl linoleate revealed that the expression catalase was significantly increased when compared to the untreated controls. In addition, the catalase protein levels and enzymatic activities increased in the mouse liver homogenates. These results suggest that methyl linoleate that is produced by G. lucidum stimulates the catalase expression at the transcription level.

Evaluation of Achyranthes japonica Ethanol Extraction on the Inhibition Effect of Hyluronidase and Lipoxygenase (쇠무릎 에탄올 추출물의 DPPH, 히알루로니다아제 및 리폭시게나아제 저해 효과)

  • Cho, Kyung-Soon
    • Journal of Life Science
    • /
    • v.25 no.12
    • /
    • pp.1370-1376
    • /
    • 2015
  • The 1, 1- diphenyl 2-picrylhyorazyl (DPPH) is a well-known radical and a trap (scavenger) for other radicals. Hyaluronidase (HAase) is an enzyme that depolymerizes the polysaccharide hyaluronic acid (HA) in the extracellular matrix of connective tissue. Lipoxygenase (LOX) enzyme was reported to convert the arachidonic, linoleic and other polyunsaturated fatty acid into biologically active metabolites involved in the inflammatory and immune responses. The purpose of the present study is to evaluate plant extracts as sources of natural antioxidants and to examine whether Achyranthes japonica having significant DPPH, HAase and LOX inhibitory activity. The inhibitory effect of HAase by A. japonica was assayed using a Morgan microplate assay. The antioxidant activity of the A. japonica extracts was measured on the basis of the scavenging activity of the stable 1, 1- diphenyl 2-picrylhyorazyl (DPPH) free radical. DPPH scavenging activity of matured roots of A. japonica was evaluated at 4.0 mg/ml was 87.8% and that of young roots was 86.2% at same concentration. The roots of A. japonica showed maximum inhibition of HAase activity (IC50 = 27.7 μg/ml). The highest LOX inhibition was recorded in the root extract among three vegetative parts. Inhibition of HAase activity of roots may contribute towards the development of herbal medicines. Although percent inhibition of lipoxygenase by Achyranthes japonica for all young and matured groups for leaves, stems, and roots at different concentrations, there were not show a statistically significant difference (p<0.05).

Antioxidant and Inhibitory Activities on Angiotensin Converting Enzyme in Lysimachia clethroides Duby (큰까치수영의 항산화 및 안지오텐신 전환 효소 저해 활성)

  • Bang, Jin-Ki;Seong, Nak-Sul;Lee, Seung-Eun
    • Applied Biological Chemistry
    • /
    • v.47 no.2
    • /
    • pp.265-269
    • /
    • 2004
  • This study was conducted to develop physiologically active plant materials from medicinal plants. Crude extracts and solvent fractions prepared from Lysimachia cletroides Duby were tested for their antioxidant and antihypertensive activities. For ellucidating antioxidant potential, inhibition rate on linoleic acid peroxidation, as well as scavenging activities on superoxide anion and 1,1-dipicrylphenylhydrazyl (DPPH) radical were evaluated. For analyzing antihypertensive effect, inhibitory activity on angiotensin converting enzyme (ACE) was done. Methanol extract of L. cletroides showed potent inhibition activity of 83% on linoleic acid peroxidation, which was more effective than -2% of ${\alpha}-tocopherol$ at $25\;{\mu}g/ml$. Methanol and water extracts exhibited strong scavenging activities of $86{\sim}109%$ and $96{\sim}122%$ on superoxide anion radical which was higher than $-4{\sim}69%$ of ascorbic acid at $5{\sim}200\;{\mu}g/ml$. Hexane, ether and ethylacetate fractions possessed 133, 100 and 88% inhibitory activities on ACE at $4,000\;{\mu}g/ml$, respectively. From the results, it was expected that Lysimachia cletroides could be a new antioxidant and antihypertensive resource.

Antioxidant and Inhibition on Angiotensin Converting Enzyme Activity of Colored Potato Extracts (유색감자 추출물의 항산화 및 항고혈압 활성)

  • Park, Young-Eun;Cho, Huyn-Mook;Lee, Hyeon-Jin;Hwang, Young-Sun;Choi, Su-San-Na;Lee, Su-Jin;Park, Eun-Sun;Lim, Jung-Dae;Choung, Myoung-Gun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.4
    • /
    • pp.447-452
    • /
    • 2007
  • This experiment was conducted to enhance the colored potatoes utilization and to determine the biological activity of colored potato extracts. In order to understand the factors responsible for the potent antioxidant and antihypertensive ability of colored potatoes, it has been evaluated for anti-oxidative activity using Fenton's reagent/ethyl linoleate system and for free radical scavenging activity using the 1,1-diphenyl-2-picryl hydrazyl free radical generating system. There were significant differences of antioxidant activities in $50{\mu}g/mL$ extracts treatment among different colored potatoes. About two-fold higher radical scavenging activity was found in 'Daegwan 1-102', 'Daegwan 1-104' and 'Jasim' compared to that in 'Superior'. Based on the flesh color tested, potatoes with purple tuber showed higher radical scavenging activity than red potatoes, while white potato showed the lowest radical scavenging activity. The ability of 80% ethanol extracts from colored potatoes to influence the inhibitory activity of angiotensin converting enzyme(ACE) and xanthine oxidase(XOase) has also been investigated. Expect 'Jasim', the high levels of inhibition activity of xanthine oxidase in two colored potatoes such as 'Daegwan 1-102' and 'Daegwan 1-104' were highly correlated to $IC_{50}$ values of ACE inhibition activity. The various therapeutic benefit claims in the new functional medicinal usage of colored potatoes ascribed to the phenolic compounds and anthocyanin. This result revealed that the extracts of colored potatoes are expected to be good candidate for development into source of free radical scavengers and anti-hypertentive agent.

Effects of Sea Tangle (Laminaria japonica) Extract and Fucoidan Drinks on Oxygen Radicals and Their Scavenger Enzymes in Stressed Mouse (스트레스 부하 마우스의 활성산소 및 제거효소에 미치는 다시마(Laminaria japonica)와 후코이단 음료의 영향)

  • CHOI Jin-Ho;KIM Dae-Ik;PARK Soo-Hyun;KIM Dong-Woo;KIM Chang Mok;KOO Jae Geun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.6
    • /
    • pp.764-769
    • /
    • 1999
  • This study was designed to investigate the effects of sea tangle (Laminaria japonica) extract (Dasi-Ex group: dry base $4.0\%$) and fucoidan-added (Fuco-I, II, III group: fucoidan of $1,0\%,\;2.0\%,\;3.0\%$ added to Dasi-Ex) drinks on the formation of oxygen radicals and scavenger enzyme activities of stressed mice. ICR male mice (20 $\pm$2 g) were fed experimental diets and these drinks instead of water for 18 days including 4 days of sociopsychological stress. Dasi-Ex and Fuco-I, II and III groups resulted in a marked decreases $20\~40\%$ in basal oxygen radical (BOR) formation, and $15\~25\%$ in induced oxygen radical (IOR) formation compared with control group. Hydroxyl radical formations were significantly inhibited about $10\%$ in Dasi-Ex group, while remarkably inhibited $30\~40\%$ in Fuco-I, II and III groups. lipid peroxide (ISO) levels in Dasi-Ex group were not significantly different from those of control group, tut Fuco-I, II and III groups resulted in a significant decreases about $10\%$ in LPO levels compared with control group, Dasi-Ex, Fuco-I, II and III groups resulted in a marked decreases ($31\%,\;36\%,\;39\%$ and $42\%$, respectively) in oxidized protein levels through production of carbonyl group. Significant differences in nitric oxide (NO) levels in Dasi-Ex group were not obtained, but NO levels were slightly inhibited about $7\%$ in Fuco-I and II groups and $20\%$ in Fuco-III group compared with control group. Significant differences in superoxide dismutase (SOD) and catalase (CAT) activities in Dasi-Ex and Fuco-I groups were not obtained, but Fuco-II and III groups resulted in a significant increases $25\~40\%$ in SOD activities, and about $10\%$ in CAT activities compared with control group. These results suggest that the sociopsychological stress and aging process could be effectively inhibited by biological activity of sea tangle and fucoidan components.

  • PDF

Protective Effect of Nitric Oxide against Oxidative Stress under UV-B Radiation in Maize Leaves (UV-B 조사시 옥수수 잎의 산화적 스트레스에 대한 Nitric Oxide의 보호효과)

  • Kim, Tae-Yun;Jo, Myung-Hwan;Hong, Jung-Hee
    • Journal of Environmental Science International
    • /
    • v.19 no.12
    • /
    • pp.1323-1334
    • /
    • 2010
  • The effect of nitric oxide (NO) on antioxidant system and protective mechanism against oxidative stress under UV-B radiation was investigated in leaves of maize (Zea mays L.) seedlings during 3 days growth period. UV-B irradiation caused a decrease of leaf biomass including leaf length, width and weight during growth. Application of NO donor, sodium nitroprusside (SNP), significantly alleviated UV-B stress induced growth suppression. NO donor permitted the survival of more green leaf tissue preventing chlorophyll content reduction and of higher quantum yield for photosystem II than in non-treated controls under UV-B stress, suggesting that NO has protective effect on chloroplast membrane in maize leaves. Flavonoids and anthocyanin, UV-B absorbing compounds, were significantly accumulated in the maize leaves upon UV-B exposure. Moreover, the increase of these compounds was intensified in the NO treated seedlings. UV-B treatment resulted in lipid peroxidation and induced accumulation of hydrogen peroxide ($H_2O_2$) in maize leaves, while NO donor prevented UV-B induced increase in the contents of malondialdehyde (MDA) and $H_2O_2$. These results demonstrate that NO serves as antioxidant agent able to scavenge $H_2O_2$ to protect plant cells from oxidative damage. The activities of two antioxidant enzymes that scavenge reactive oxygen species, catalase (CAT) and ascorbate peroxidase (APX) in maize leaves in the presence of NO donor under UV-B stress were higher than those under UV-B stress alone. Application of 2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3- oxide (PTIO), a specific NO scavenger, to the maize leaves arrested NO donor mediated protective effect on leaf growth, photosynthetic pigment and free radical scavenging activity. However, PTIO had little effect on maize leaves under UV-B stress compared with that of UV-B stress alone. $N^{\omega}$-nitro-L-arginine (LNNA), an inhibitor of nitric oxide synthase (NOS), significantly increased $H_2O_2$ and MDA accumulation and decreased antioxidant enzyme activities in maize leaves under UV-B stress. This demonstrates that NOS inhibitor LNNA has opposite effects on oxidative resistance. From these results it is suggested that NO might act as a signal in activating active oxygen scavenging system that protects plants from oxidative stress induced by UV-B radiation and thus confer UV-B tolerance.