• Title/Summary/Keyword: Scattering process

Search Result 434, Processing Time 0.025 seconds

Development of Single-Frame PIV Velocity Field Measurement Technique Using a High Resolution CCD Camera (고해상도 CCD카메라를 이용한 Single-Frame PIV 속도장 측정기법 개발)

  • Lee, Sang-Joon;Shin, Dae-Sig
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.21-28
    • /
    • 2000
  • Although commercial PIV systems have been widely used for the non-intrusive velocity field measurement of fluid flows, they are still under development and have considerable room for improvement. In this study, a single-frame double-exposure PIV system using a high-resolution CCD camera was developed. A pulsed Nd:Yag laser and high-resolution CCD camera were synchronized by a home-made control circuit. In order to resolve the directional ambiguity problem encountered in the single-frame PIV technique, the second particle image was genuinely shifted in the CCD sensor array during the time interval dt. The velocity vector field was determined by calculating the displacement vector at each interrogation window using cross-correlation with 50% overlapping. In order to check the effect of spatial resolution of CCD camera on the accuracy of PIV velocity field measurement, the developed PIV system with three different resolution modes of the CCD camera (512 ${\times}$ 512, lK ${\times}$ IK, 2K ${\times}$ 2K) was applied to a turbulent flow which simulate the Zn plating process of a steel strip. The experimental model consists of a snout and a moving belt. Aluminum flakes about $1{\mu}m$ diameter were used as scattering particles for the liquid flow in the zinc pot and the gas flow above the zinc surface was seeded with atomized olive oil with an average diameter of 1-$3{\mu}m$. Velocity field measurements were carried out at the strip speed $V_s$=1.0 m/s. The 2K ${\times}$ 2K high-resolution PIV technique was significantly superior compared to the smaller pixel resolution PIV system. For the cases of 512 ${\times}$ 512 and 1K ${\times}$ 1K pixel resolution PIV system, it was difficult to get accurate flow structure of viscous flow near the wall and small vortex structure in the region of large velocity gradient.

A Study on the Processing of Long Fiber-Reinforced Composite Materials for Thermoforming On the Correlation Coefficient between Separation and Orientation (Thermoforming용 長纖維强化 複合材料의 成形工程에 관한 硏究 分離$\cdot$配向의 相關계수)

  • 이동기;김정락;김상필;이우일;김이곤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1106-1114
    • /
    • 1993
  • A composite material is composed of a reinforcement and a matrix, which determine mechanical characteristics of the molded part. There is no doubt that the properties of a composite material depend not only on the characteristics of the matrix but also on the structure of glass fiber mat and a fiber type of reinforcement. Therefore it is very important to study the composites of reinforcement and the matrix, and to control the fiber type in the process of molding of composite materials. In this study, the specimen was made of a glass fiber mat of 6-7mm thickness by scattering it in the air after cutting the glass fiber mat with needle punching makes change according to the type of needle and the number of times of stretching. First the sheet was made by means of a hot-press after accumulating a matrix and a glass fiber according to each mat structure of glass fiber. It was heated the manufactured sheet with the dry oven and molded it a secondary high temperature compression by a 30 ton oilhydraulic press. A definition of a correlation coefficient is showed up during this period and find it out with the relation of the fiber-matrix separation and the fiber orientation. We studied effects of the glass fiber mat structures on the correlation coefficient.

Preparation of Poly(Dt-lactide-co-glycolide) Nanoparticles by PEG-PPG Diblock Copolymer (PEG-PPG 블록 공중합체를 이용한 폴리(DL-락타이드-co-글리콜라이드) 나노입자의 제조)

  • 정택규;오유미;신병철
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.370-376
    • /
    • 2003
  • Poly(DL-lactide-co-glycolide) nanoparticles were prepared by the modified spontaneous emulsification solvent diffusion method. Polymer solution was prepared by two water-soluble organic solvents, such as ethanol and acetone. Because of its biocompatible nature, PEG-PPG diblock copolymer was used as surfactant and stabilizer. The influence of several preparative variables on the nanoparticle formation, such as type and concentration of stabilizing agent, stirring methods, water/oil phase ratio and polymer concentration were investigated in order to control and optimize the process. After preparation of nanoparticles, particle size and distribution were evaluated by the light scattering particle analyzer. As results, the particle size was 50-200 nm and dispersibility was monodisperse. It was found that the appropriate selections of binary solvent mixtures and polymeric concentrations in both organic and aqueous phases could provide a good yield and favorable physical properties of PLGA nanoparticles.

The Comparative Study of the Flood Discharge Formulas in Korean Rivers (우리나라 홍수량(洪水量) 공식(公式)들의 비교연구(比較硏究))

  • Ko, Jae Ung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.113-125
    • /
    • 1988
  • The design flood formulas in Korean river are reviewed from the early historical stage of the river improvement projects to the present situation. The 11 different formulas are selected for the comparative purpose of the each results at the same rainfall and basin characteristics under the same size of the basin. The max. and min. values of the design flood discharge for the same basin deviated almost as large as 400% according to the formula used without respect to the basin size. The remains have big scattering within those deviations. The steps to derive the design flood are very complicated and tedious time consuming process at present applications. However the reaults computed through the steps are quationable in accordance with the lengths of the hydrological historic records and the accuracy of the data observation technique in view of the engineering judgement. The purpose of this review will give the one of the simplest and the reasonable approach to eliminate misleading the determination of the design flood peak.

  • PDF

Development of Micro-stereolithography Technology using Metal Powder (금속 분말을 이용한 마이크로 광 조형 기술의 개발)

  • Lee J.W.;Lee I.H.;Cho D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1155-1158
    • /
    • 2005
  • Micro-stereolithography is a newly proposed technology as a means that can fabricate a 3D micro structure of free form. It makes a 3D micro-structure by dividing the shape into many slices of relevant thickness along horizontal surfaces, hardening each layer of slice with a focused laser beam, and stacking them up to a desired shape. However, we do not anticipate the electric conductivity of the final product at the existing micro-stereolithography. The reason is that this technology uses polymer to make the product. Thus the new suspension which was mixed conventional photopolymer with metal powder was developed in this study. The developed suspensions were based on SL5180 which is commercialized resin and IMS03 that is made in our laboratory. And Triton X-100 was added at the suspension for getting the scattering effect and stabilizing effect. The layer recoating device was developed to be flat the mixed high viscosity suspension. A 3D micro structure was manufactured by using recoating system and micro-stereolithography system. The fabricated product was sintered to get the electric conductivity. After sintering, a pure copper product was made. In this study, new process was developed by making metal micro structure having an electric conductivity. This technology broadened the realm of the micro-stereolithography technology. And it will be applied to make the 3D micro structure of free form which has a high hardness and an electric conductivity in the near future.

  • PDF

Investigation of the Hyperfine Structure Effect in a Mn-Doped LiNbO3 (Mn이 첨가된 LiNbO3의 초 미세구조 효과 연구)

  • Lee, Haeng-Ki;Jang, Hyon-Chol;Park, Jung-Il
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.3
    • /
    • pp.171-177
    • /
    • 2012
  • The computer program (EPR-NMR program version 6.2) employed here sets up the spin Hamiltonian matrices and determines their eigenvalues using exact diagonalization. We study the electron spin resonance for $Mn^{2+}$ in ferroelectric $LiNbO_3$ single crystals. The self-energy is obtained using the projection operator method developed by Argyres and Sigel. The self-energy is calculated to be axially symmetric about the by the spin Hamiltonian. The line-widths decreased as the temperature increased; we assume that the hyperfine structure transition is a more dominant scattering than the other transitions. We conclude that the calculation process presented in this study is useful for quantum optical transitions.

Surface Segregation of Hydroniums and Chlorides in a Thick Ice Film at Higher Temperatures

  • Lee, Du Hyeong;Bang, Jaehyeock;Kang, Heon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.263-263
    • /
    • 2013
  • This work examines the dynamic properties of ice surfaces in vacuum for the temperature range of 140~180 K, which extends over the onset temperatures for ice sublimation and the phase transition from amorphous to crystallization ice. In particular, the study focuses on the transport processes of excess protons and chloride ions in ice and their segregative behavior to the ice surface. These phenomena were studied by conducting experiments with a relatively thick (~100 BL) ice film constructed with a bottom $H_2O$ layer and an upper $D_2O$ layer, with excess hydronium and chloride ions trapped at the $H_2O$/$D_2O$ interface as they were generated by the ionization of hydrogen chloride. The migration of protons, chloride ions, and water molecules to the ice film surface and their H/D exchange reactions were measured as a function of temperature using the methods of low energy sputtering (LES) and Cs+ reactive ion scattering (RIS). Temperature programmed desorption (TPD) experiments monitored the desorption of water and hydrogen chloride from the surface. Our observations indicated that both hydronium and chloride ions migrated from the interfacial layer to segregate to the surface at high temperature. Hydrogen chloride gas desorbs via recombination reaction of hydronium and chloride ions floating on the surface. Surface segregation of these species is driven by thermodynamic potential gradient present near the ice surface, whereas in the bulk, their transport is facilitated by thermal diffusion process. The finding suggests that chlorine activation reactions of hydrogen chloride for polar stratospheric ice particles occur at the surface of ice within a depth of at most a few molecular layers, rather than in the bulk phase.

  • PDF

Diameters Analyses of Fine Particles Emitted When Mackerels Cooked (고등어 조리 시 발생하는 미세먼지의 입경 분석)

  • Kim, Seong Mi;Lee, Im Hack;Lee, Kyoung Bin;Kim, Jin Sik;Kwon, Myung Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.4
    • /
    • pp.361-369
    • /
    • 2017
  • In this study, the characteristics of the dust emission according to the presence or absence of operation of the gas stove were analyzed by particle size analysis and density estimation while the mackerel was cooked while the fan was placed on the gas stove used in the home. The experiment was carried out using 20 mackerel of normal size at home. Commercially available canola oil was used as edible oil. In order to understand the characteristics such as particle size distribution of fine dust, light scattering measurement method which can be measured at intervals of several seconds was used. Particles generated by combustion of gas stove, particles formed by heating cooking oil, and particles generated by heating mackerel fish meat are judged to be nano size particles smaller than $1{\mu}m$. Therefore, it is necessary to use precise measurement method rather than the measurement method using the filter which is currently being measured in the measurement of the particles discharged from the fuel combustion or food cooking in the future. Analyzing the particle size and density of the dust emitted from the cooking stove is expected to contribute technically to the reduction of dust emissions from the cooking process of gas and fuel facilities at home and commercial facilities.

Fabrication of 3D Micro Structure by Dual Diffuser Lithography (듀얼 디퓨저 리소그래피를 이용한 3 차원 마이크로 구조의 제작)

  • Han, Dong-Ho;Hafeez, Hassan;Ryu, Heon-Yul;Cho, Si-Hyeong;Park, Jin-Goo
    • Korean Journal of Materials Research
    • /
    • v.23 no.8
    • /
    • pp.447-452
    • /
    • 2013
  • Recently, products that a have 3-dimensional(3D) micro structure have been in wide use. To fabricate these 3D micro structures, several methods, such as stereo lithography, reflow process, and diffuser lithography, have been used. However, these methods are either very complicated, have limitations in terms of patterns dimensions or need expensive components. To overcome these limitations, we fabricated various 3D micro structures in one step using a pair of diffusers that diffract the incident beam of UV light at wide angles. In the experiment, we used positive photoresist to coat the Si substrate. A pair of diffusers(ground glass diffuser, opal glass diffuser) with Gaussian and Lambertian scattering was placed above the photomask in the passage of UV light in the photolithography equipment. The incident rays of UV light diffracted twice at wider angles while passing through the diffusers. After exposure, the photoresist was developed fabricating the desired 3D micro structure. These micro structures were analyzed using FE-SEM and 3D-profiler data. As a result, this dual diffuser lithography(DDL) technique enabled us to fabricate various microstructures with different dimensions by just changing the combination of diffusers, making this technology an efficient alternative to other complex techniques.

Chemoenzymatic Synthesis of H-shaped Amphiphilic Pentablock Copolymer and Its Self-assembly Behavior (H-형태 양친매성 펜타블록 공중합체의 화학효소적 합성과 자기회합거동 평가)

  • Chen, Peng;Li, Ya-Peng;Li, Cai-Jin;Meng, Xin-Lei;Zhang, Bao;Zhu, Ming;Liu, Yan-Jing;Wang, Jing-Yuan
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.332-341
    • /
    • 2013
  • H-shaped amphiphilic pentablock copolymers $(PSt)_2-b-PCL-b-PEO-b-PCL-b-(PSt)_2$ was synthesized via chemoenzymatic method by combining enzyme-catalyzed ring-opening polymerization (eROP) of ${\varepsilon}$-caprolactone (${\varepsilon}$-CL) and atom transfer radical polymerization (ATRP) of styrene. By this process, we obtained copolymers with controlled molecular weight and low polydispersity. The structure and composition of the obtained copolymers were characterized by nuclear magnetic resonance (NMR), gel permeation chromatography (GPC) and infrared spectroscopy analysis (IR). The crystallization behavior of the copolymers was analyzed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The crystallization behavior of the H-shaped block copolymers demonstrated a PCL dominate crystallization. The self-assembly behavior of the copolymers was investigated in aqueous media. The hydrodynamic diameters of the copolymer micelles in aqueous solution were measured by dynamic light scattering (DLS). The morphology of the copolymer micelles was observed by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The hydrodynamic diameters of spherical micelles declined gradually with the increase of the hydrophobic chain lengths of the copolymers. The critical micelle concentration (CMC) values were determined from fluorescence emission, and it was found that the CMCs decreased with an increase of PSt hydrophobic block lengths.