• Title/Summary/Keyword: Scattering process

Search Result 434, Processing Time 0.027 seconds

[Retraction]Size measurement and characterization of ceria nanoparticles using asymmetrical flow field-flow fractionation (AsFlFFF)

  • Kim, Kihyun;Choi, Seong-Ho;Lee, Seungho;Kim, Woonjung
    • Analytical Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.173-184
    • /
    • 2019
  • As the size of semiconductors becomes smaller, it is necessary to perform high precision polishing of nanoscale. Ceria, which is generally used as an abrasive, is widely used because of its uniform quality, but its stability is not high because it has a high molecular weight and causes agglomeration and rapid precipitation. Such agglomeration and precipitation causes scratches in the polishing process. Therefore, it is important to accurately analyze the size distribution of ceria particles. In this study, a study was conducted to select dispersants useful for preventing coagulation and sedimentation of ceria. First, a dispersant was synthesized and a ceria slurry was prepared. The defoamer selection experiment was performed in order to remove the air bubbles which may occur in the production of ceria slurry. Dynamic light scattering (DLS) and asymmetrical flow field-flow fractionation (AsFlFFF) were used to determine the size distribution of ceria particles in the slurry. AsFlFFF is a technique for separating nanoparticles based on sequential elution of samples as in chromatography, and is a useful technique for determining the particle size distribution of nanoparticle samples. AsFlFFF was able to confirm the presence of a little quantities of large particles in the vicinity of 300 nm, which DLS can not detect, besides the main distribution in the range of 60-80 nm. AsFlFFF showed better accuracy and precision than DLS for particle size analysis of a little quantities of large particles such as ceria slurry treated in this study.

A Study on the Establishment of ISAR Image Database Using Convolution Neural Networks Model (CNN 모델을 활용한 항공기 ISAR 영상 데이터베이스 구축에 관한 연구)

  • Jung, Seungho;Ha, Yonghoon
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.4
    • /
    • pp.21-31
    • /
    • 2020
  • NCTR(Non-Cooperative Target Recognition) refers to the function of radar to identify target on its own without support from other systems such as ELINT(ELectronic INTelligence). ISAR(Inverse Synthetic Aperture Radar) image is one of the representative methods of NCTR, but it is difficult to automatically classify the target without an identification database due to the significant changes in the image depending on the target's maneuver and location. In this study, we discuss how to build an identification database using simulation and deep-learning technique even when actual images are insufficient. To simulate ISAR images changing with various radar operating environment, A model that generates and learns images through the process named 'Perfect scattering image,' 'Lost scattering image' and 'JEM noise added image' is proposed. And the learning outcomes of this model show that not only simulation images of similar shapes but also actual ISAR images that were first entered can be classified.

Electrical Characteristics of Copper Circuit using Inkjet Printing (잉크젯 프린팅 방식으로 형성된 구리 배선의 전기적 특성 평가)

  • Kim, Kwang-Seok;Koo, Ja-Myeong;Joung, Jae-Woo;Kim, Byung-Sung;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.43-49
    • /
    • 2010
  • Direct printing technology is an attractive metallization method, which has become immerging as "Green technology" to the conventional photolithography, on account of low cost, simple process and environment-friendliness. In order to commercialize the printed electronics in industry, it is essential to evaluate the electrical properties of conductive circuits using direct printing technology. In this contribution, we focused on the electrical characteristics of inkjet-printed circuits. A Cu nanoink was inkjet-printed onto a Bisaleimide triazine(BT) substrate with parallel transmission line(PTL) and coplanar waveguide(CPW) type, then was sintered at $250^{\circ}C$ for 30 min. We calculated the resistivity of printed circuits through direct current resistance by the measurement of I-V curve: the resistivity was approximately 0.558 ${\mu}{\Omega}{\cdot}cm$ which is about 3.3 times that of bulk Cu. Cascade's probe system in the frequency range from 0 to 30 GHz were employed to measure the Scattering parameter(S-parameter) with or without a gap between the substrate and the probe station chuck. The result of measured S-parameter showed that all printed circuits had over 5 dB of return loss in the entire frequency range. In the curve of insertion loss, $S_{21}$, showed that the PTL type circuits had better transmission of radio frequency (RF) than CPW type.

Structural and Electrical Features of Solution-Processed Li-doped ZnO Thin Film Transistor Post-Treated by Ambient Conditions

  • Kang, Tae-Sung;Koo, Jay-Hyun;Kim, Tae-Yoon;Hong, Jin-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.242-242
    • /
    • 2012
  • Transparent oxide semiconductors are increasingly becoming one of good candidates for high efficient channel materials of thin film transistors (TFTs) in large-area display industries. Compare to the conventional hydrogenated amorphous silicon channel layers, solution processed ZnO-TFTs can be simply fabricated at low temperature by just using a spin coating method without vacuum deposition, thus providing low manufacturing cost. Furthermore, solution based oxide TFT exhibits excellent transparency and enables to apply flexible devices. For this reason, this process has been attracting much attention as one fabrication method for oxide channel layer in thin-film transistors (TFTs). But, poor electrical characteristic of these solution based oxide materials still remains one of issuable problems due to oxygen vacancy formed by breaking weak chemical bonds during fabrication. These electrical properties are expected due to the generation of a large number of conducting carriers, resulting in huge electron scattering effect. Therefore, we study a novel technique to effectively improve the electron mobility by applying environmental annealing treatments with various gases to the solution based Li-doped ZnO TFTs. This technique was systematically designed to vary a different lithium ratio in order to confirm the electrical tendency of Li-doped ZnO TFTs. The observations of Scanning Electron Microscopy, Atomic Force Microscopy, and X-ray Photoelectron Spectroscopy were performed to investigate structural properties and elemental composition of our samples. In addition, I-V characteristics were carried out by using Keithley 4,200-Semiconductor Characterization System (4,200-SCS) with 4-probe system.

  • PDF

Topological phase transition according to internal strain in few layer Bi2Se3 thin film grown via a self-organized ordering process

  • Kim, Tae-Hyeon;Park, Han-Beom;Jeong, Gwang-Sik;Chae, Jae-Min;Hwang, Su-Bin;Jo, Man-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.272.1-272.1
    • /
    • 2016
  • In a three-dimensional topological insulator Bi2Se3, a stress control for band gap manipulation was predicted but no systematic investigation has been performed yet due to the requirement of large external stress. We report herein on the strain-dependent results for Bi2Se3 films of various thicknesses that are grown via a self-organized ordering process. Using small angle X-ray scattering and Raman spectroscopy, the changes of d-spacings in the crystal structure and phonon vibration shifts resulted from stress are clearly observed when the film thickness is below ten quintuple layers. From the UV photoemission/inverse photoemission spectroscopy (UPS/IPES) results and ab initio calculations, significant changes of the Fermi level and band gap were observed. The deformed band structure also exhibits a Van Hove singularity at specific energies in the UV absorption experiment and ab initio calculations. Our results, including the synthesis of a strained ultrathin topological insulator, suggest a new direction for electronic and spintronic applications for the future.

  • PDF

Short-duration Electron Precipitation Studied by Test Particle Simulation

  • Lee, Jaejin;Kim, Kyung-Chan;Lee, Jong-Gil
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.317-325
    • /
    • 2015
  • Energy spectra of electron microbursts from 170 keV to 340 keV have been measured by the solid-state detectors aboard the low-altitude (680 km) polar-orbiting Korean STSAT-1 (Science and Technology SATellite). These measurements have revealed two important characteristics unique to the microbursts: (1) They are produced by a fast-loss cone-filling process in which the interaction time for pitch-angle scattering is less than 50 ms and (2) The e-folding energy of the perpendicular component is larger than that of the parallel component, and the loss cone is not completely filled by electrons. To understand how wave-particle interactions could generate microbursts, we performed a test particle simulation and investigated how the waves scattered electron pitch angles within the timescale required for microburst precipitation. The application of rising-frequency whistler-mode waves to electrons of different energies moving in a dipole magnetic field showed that chorus magnetic wave fields, rather than electric fields, were the main cause of microburst events, which implied that microbursts could be produced by a quasi-adiabatic process. In addition, the simulation results showed that high-energy electrons could resonate with chorus waves at high magnetic latitudes where the loss cone was larger, which might explain the decreased e-folding energy of precipitated microbursts compared to that of trapped electrons.

Evolution of Crystal Structure by Post-extension in Nylon 56 Fibers (연신에 따른 나일론 56 섬유의 결정 구조 및 수소결합 변화)

  • Jo, Kuk Hyun;Cho, Jung Hyeong;Kim, Hyo Jung;Lee, Hyun Hwi
    • Textile Coloration and Finishing
    • /
    • v.28 no.1
    • /
    • pp.33-39
    • /
    • 2016
  • The crystal structure of nylon 56 fibers post extended by drawing process was investigated by synchrotron x-ray scattering measurement. In as-cast fiber, distinct (004) and (020) diffraction peaks were observed and they were related to initial metastable alignment of nylon molecules. With increase in the drawing ratio, (110) peak intensity was increased in vertical direction with decreasing (020) peak. At the same time, (004)' peak evolved position tilted to 29 degrees from the (004) peak. This evolution is directly related to stable crystalline phase of nylon 56 originated from additional formation of hydrogen bondings between N-H and C=O by post drawing process. We also compared density variation, stress-strain curves of the fiber as a function of drawing ratio and strain. The variations of density and tanacity also supported the increase of stable structure of nylon 56.

Analysis of Flat-Band-Voltage Dependent Breakdown Voltage for 10 nm Double Gate MOSFET

  • Jung, Hakkee;Dimitrijev, Sima
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.1
    • /
    • pp.43-47
    • /
    • 2018
  • The existing modeling of avalanche dominated breakdown in double gate MOSFETs (DGMOSFETs) is not relevant for 10 nm gate lengths, because the avalanche mechanism does not occur when the channel length approaches the carrier scattering length. This paper focuses on the punch through mechanism to analyze the breakdown characteristics in 10 nm DGMOSFETs. The analysis is based on an analytical model for the thermionic-emission and tunneling currents, which is based on two-dimensional distributions of the electric potential, obtained from the Poisson equation, and the Wentzel-Kramers-Brillouin (WKB) approximation for the tunneling probability. The analysis shows that corresponding flat-band-voltage for fixed threshold voltage has a significant impact on the breakdown voltage. To investigate ambiguousness of number of dopants in channel, we compared breakdown voltages of high doping and undoped DGMOSFET and show undoped DGMOSFET is more realistic due to simple flat-band-voltage shift. Given that the flat-band-voltage is a process dependent parameter, the new model can be used to quantify the impact of process-parameter fluctuations on the breakdown voltage.

Behavior of Hydroxide Ions at the Water-Ice Surface by Low Energy Sputtering Method

  • Kim, S.Y.;Park, E.H.;Kang, H.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.338-338
    • /
    • 2011
  • The behavior of hydroxide ions on water-ice films was studied by using $Cs^+$ reactive ion scattering (RIS), low energy sputtering (LES) and temperature-programmed desorption (TPD). A $Cs^+$ beam of a low kinetic energy (<100 eV) from $Cs^+$ ion gun was scattered at the film surface, and then $Cs^+$ projectiles pick up the neutral molecules on the surface as $Cs^+$-molecule clusters form (RIS process). In LES process, the preexisting ions on the surface are desorbed by the $Cs^+$ beam impact. The water-ice films made of a thick (>50 BL) $H_2$O layer and a thin $D_2O$ overlayer were controlled in temperatures 90~140K. We prepared hydroxide ions by using Na atoms which proceeded hydrolysis reaction either on the ice film surface or at the interface of the $H_2O$ and $D_2O$ layers.[1] The migration of hydroxide ions from the $H_2O/D_2O$ interface to the top of the film was examined as afunction of time. From this experiment, we show that hydroxide ions tend to reside at the water-ice surface. We also investigated the H/D exchange reactions of $H_2O$ and $D_2O$ molecules mediated by hydroxide ions to reveal the mechanism of migration of hydroxide to the ice surface.

  • PDF

Analysis of Transportation and Handling System of Advanced Spent Fuel Management Process Using Graphic Simulator (그래픽 전산모사를 이용한 차세대관리공정 원격운반취급 분석)

  • 홍동희;윤지섭;김성현;송태길;진재현
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.431-437
    • /
    • 2003
  • The graphic simulator has been used to analyze the problems that can occur during transporting and handling radioactive materials, and to derive necessary devices that can transport and handle spent fuel powder without scattering in a hot cell. The graphic simulator has advantages over the real scale physical mockup with respect to cost and schedule. The process equipment and maintenance devices can be verified in advance with less cost and reduced schedule. The derived results are being reflected in the design of equipment for demonstration and are being verified during demonstration.

  • PDF