• Title/Summary/Keyword: Scattering phenomena

Search Result 99, Processing Time 0.025 seconds

Sidewall effect in a stress induced method for Spontaneous growth of Bi nanowires

  • Kim, Hyun-Su;Ham, Jin-Hee;Lee, Woo-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.95-95
    • /
    • 2009
  • Single-crystalline Bi nanowires have motivated many researchers to investigate novel quasi-one-dimensional phenomena such as the wire-boundary scattering effect and quantum confinement effects due to their electron effective mass (~0.001 me). Single crystalline Bi nanowires were found to grow on as-sputtered films after thermal annealing at $270^{\circ}C$. This was facilitated by relaxation of stress between the film and the thermally oxidized Si substrate that originated from a mismatch of the thermal expansion. However, the method is known to produce relatively lower density of nanowires than that of other nanowire growth methods for device applications. In order to increase density of nanowire, we propose a method for enhancing compressive stress which is a driving force for nanowire growth. In this work, we report that the compressive stress can be controlled by modifying a substrate structure. A combination of photolithography and a reactive ion etching technique was used to fabricate patterns on a Si substrate. It was found that the nanowire density of a Bi film grown on $100{\mu}m{\times}100{\mu}m$ pattern Si substrate increased over seven times higher than that of a Bi sample grown on a normal substrate. Our results show that density of nanowire can be enhanced by sidewall effect in optimized proper pattern sizes for the Bi nanowire growth.

  • PDF

Effect of Boron Content and Temperature on Interactions and Electron Transport in BGaN Bulk Ternary Nitride Semiconductors

  • Bouchefra, Yasmina;Sari, Nasr-Eddine Chabane
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.1
    • /
    • pp.7-12
    • /
    • 2017
  • This work takes place in the context of the development of a transport phenomena simulation based on group III nitrides. Gallium and boron nitrides (GaN and BN) are both materials with interesting physical properties; they have a direct band gap and are relatively large compared to other semiconductors. The main objective of this paper is to study the effect of boron content on the electron transport of the ternary compound $B_xGa_{(1-x)}N$ and the effect of the temperature of this alloy at x=50% boron percentage, specifically the piezoelectric, acoustic, and polar optical scatterings as a function of the energy, and the electron energy and drift velocity versus the applied electric field for different boron compositions ($B_xGa_{(1-x)}N$), at various temperatures for $B_{0.5}Ga_{0.5}N$. Monte carlo simulation, was employed and the three valleys of the conduction band (${\Gamma}$, L, X) were considered to be non-parabolic. We focus on the interactions that do not significantly affect the behavior of the electron. Nevertheless, they are introduced to obtain a quantitative description of the electronic dynamics. We find that the form of the velocity-field characteristic changes substantially when the temperature is increased, and a remarkable effect is observed from the boron content in $B_xGa_{(1-x)}N$ alloy and the applied field on the dynamics of holders within the lattice as a result of interaction mechanisms.

Analysis of Acoustic Propagation using Spectral Parabolic Equation Method (스펙트럴 포물선 방정식 법을 이용한 수중음파 전달해석)

  • Kim, Kook-Hyun;Seong, Woo-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.72-78
    • /
    • 1996
  • This thesis deals with a method to solve a two-and-one-half-dimensional ($2\frac12$ D) problem, which means that the ocean environment is two-dimensional whereas the source is fully three-dimensionally propagating, including three-dimensional refraction phenomena and three-dimensional back-scattering, using two-dimensional two-way parabolic equation method combined with Fourier synthesis. Two dimensional two-way parabolic equation method uses Galerkin's method for depth and Crank-Nicolson method and alternating direction for range and provides a solution available to range-dependent problem with wave-field back-scattered from discontinuous interface. Since wavenumber, k, is the function of depth and vertical or horizontal range, we can reduce a dimension of three-dimensional Helmholtz equation by Fourier transforming in the range direction. Thus transformed two-dimensional Helmholtz equation is solved through two-way parabolic equation method. Finally, we can have the $2\frac12$ D solution by inverse Fourier transformation of the spectral solution gained from in the last step. Numerical simulation has been carried out for a canonical ocean environment with stair-step bottom in order to test its accuracy using the present analysis. With this spectral parabolic equation method, we have examined three-dimensional acoustic propagation properties in a specified site in the Korean Straits.

  • PDF

Changes of the Flame Temperature and OH Radical in the Unsteady Extinction Process (비정상 소화 과정에서의 화염 온도 및 OH 라디칼의 변화)

  • Lee, Uen-Do;Lee, Ki-Ho;Oh, Kwang-Chul;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1557-1566
    • /
    • 2004
  • A flame extinction phenomenon is a typical unsteady process in combustion. Flame extinction is characterized by various physical phenomena, such as convection, diffusion, and the production of heat and mass. Flame extinction can be achieved by either increasing the strain rate or curvature, by diluting an inert gas or inhibitor, or by increasing the thermal or radiant energy loss. Though the extinction is an inherently transient process, steady and quasi-steady approaches have been used as useful tools for understanding the flame extinction phenomenon. Recently, unsteady characteristics of flames have been studied by many researchers, and various attempts have been made to understand unsteady flame behavior, by using various extinction processes. Representative parameters for describing flame, such as flame temperature, important species related to reactions, and chemi-luminescence of the flame have been used as criterions of flame extinction. In these works, verification of each parameter and establishing the proper criterions of the extinction has been very important. In this study, a time-dependent flame temperature and an OH radical concentration were measured using optical methods, and the instantaneous change of the flame luminosity was also measured using a high-speed ICCD (HICCD) camera. We compare the unsteady extinction points obtained by three different methods, and we discuss transient characteristics of maximum flame temperature and OH radical distribution near the extinction limit.

Analysis of Target Identification Performances Based on HRR Profiles against the Moving Targets (HRR Profile을 이용한 이동 표적에 대한 표적 식별 성능 분석)

  • Park, Jong-Il;Jung, Sang-Won;Kim, Kyung-Tae;Chun, Jong-Hoon;Bae, Jun-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.3
    • /
    • pp.289-295
    • /
    • 2009
  • HRR(High Resolution Range) profiles show one-dimensional radar images including electromagnetic scattering phenomena of a target. Thus, they are not only robust to noise, but also easily obtainable in a real-time. However, in order to construct a training database for the success of radar target identification, a huge amount of HRR profiles are needed because HRR profiles are highly dependent on the relative angle between the radar and the target. In order to alleviate this difficulty, a database construction method based on the scenarios of target's movement is proposed. The proposed method is able to provide a reliable target identification performance even with a small amount of training database.

High Resolution InSAR Phase Simulation using DSM in Urban Areas (도심지역 DSM을 이용한 고해상도 InSAR 위상 시뮬레이션)

  • Yoon, Geun-Won;Kim, Sang-Wan;Lee, Yong-Woong;Lee, Dong-Cheon;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.181-190
    • /
    • 2011
  • Since the radar satellite missions such as TerraSAR-X and COSMO-SkyMed were launched in 2007, the spatial resolution of spaceborne SAR(Synthetic Aperture Radar) images reaches about 1 meter at spotlight mode. In 2011, the first Korean SAR satellite, KOMPSAT-5, will be launched, operating at X-band with the highest spatial resolution of 1 m as well. The improved spatial resolution of state-of-the-art SAR sensor suggests expanding InSAR(Interferometric SAR) analysis in urban monitoring. By the way, the shadow and layover phenomena are more prominent in urban areas due to building structure because of inherent side-looking geometry of SAR system. Up to date the most conventional algorithms do not consider the return signals at the frontage of building during InSAR phase and SAR intensity simulation. In this study the new algorithm introducing multi-scattering in layover region is proposed for phase and intensity simulation, which is utilized a precise LIDAR DSM(Digital Surface Model) in urban areas. The InSAR phases simulated by the proposed method are compared with TerraSAR-X spotlight data. As a result, both InSAR phases are well matched, even in layover areas. This study will be applied to urban monitoring using high resolution SAR data, in terms of change detection and displacement monitoring at the scale of building unit.

Assessment on the Monitoring System for KURT using Optical Fiber Sensor Cable (광섬유센서케이블을 이용한 지하처분연구시설의 감시시스템 운영 평가)

  • Kim, Kyung-Su;Bae, Dae-Seok;Koh, Yong-Kwon;Kim, Jung-Yul
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.4
    • /
    • pp.293-301
    • /
    • 2010
  • Optical fiber cable, as a sensor, was installed on the wall of KAERI(Korea Atomic Energy Research Institute) Underground Research Tunnel(KURT) in order to monitor the physical stability of the tunnel, which was constructed for technical development and demonstration of radioactive waste disposal. This monitoring system has two simultaneous measurements of temperature and strain over time using Brillouin backscatter. According to the results of the monitoring from Jan. 2008 to Nov. 2009, there is no significant displacement or movement at the tunnel wall However, the cumulative volume of total strain increased slightly as time passes with the comparison of the reference observation, which was measured in Jan. 2008. The change in cumulative volume of total strain indicates that the strain level had been affected by saturation and de-saturation phenomena due to groundwater fluctuation at several points at KURT. This system is based on the distributed sensing technique concept, not point sensing. By using this system, a displacement can be detected with the range from $20{\mu}{\varepsilon}$ to $28,000{\mu}{\varepsilon}$ every 1m interval in minimum. A temperature variation can be monitored at every 0.5m interval with the resolution of 0.01 in minimum. Based on the study, this monitoring system is potentially applicable to long term monitoring systems for radioactive waste disposal project as well as other structures and underground openings.

A Study on the Numerical Simulation of the Seismic Sea Waves in the East Sea based on the Boussinesq Equation (Boussinesq 방정식을 이용한 동해지진해일 수치실험 연구)

  • Kim, Sung-Dae;Jung, Kyung-Tae;Park, Soo-Young
    • Ocean and Polar Research
    • /
    • v.29 no.1
    • /
    • pp.9-31
    • /
    • 2007
  • Most seismic sea waves in the East Sea originate from earthquakes occurring near the Japanese west coast. While the waves propagate in the East Sea, they are deformed by refraction, diffraction and scattering. Though the Boussinesq equation is most applicable for such wave phenomena, it was not used in numerical modelling of seismic sea waves in the East Sea. To examine characteristics of seismic sea waves in the East Sea, numerical models based on the Boussinesq equation are established and used to simulate recent tsunamis. By considering Ursell parameter and Kajiura parameter, it is proved that Boussinesq equation is a proper equation for seismic sea waves in the East Sea. Two models based on the Boussinesq equation and linear wave equation are executed with the same initial conditions and grid size ($1min{\times}1min$), and the results are compared in various respects. The Boussinesq equation model produced better results than the linear model in respect to wave propagation and concentration of wave energy. It is also certified that the Boussinesq equation model can be used for operational purpose if it is optimized. Another Boussinesq equation model whose grid size is $40sec{\times}30sec$ is set up to simulate the 1983 and 1993 tsunamis. As the result of simulation, new propagation charts of 2 seismic sea waves focused on the Korean east coast are proposed. Even though the 1983 and 1993 tsunamis started at different areas, the propagation paths near the Korean east coast are similar and they can be distinguished into 4 paths. Among these, total energy and propagating time of the waves passing over North Korea Plateau(NKP) and South Korea Plateau(SKP) determine wave height at the Korean east coast. In case of the 1993 tsunami, the wave passing over NKP has more energy than the wave over SKP. In case of the 1983 tsunami, the huge energy of the wave passing over SKP brought about great maximum wave heights at Mukho and Imwon. The Boussinesq equation model established in this study is more useful for simulation of seismic sea waves near the Korean east coast than it is the Japanese coast. To improve understanding of seismic sea waves in shallow water, a coastal area model based on the Boussinesq equation is also required.

Analysis of Elementary Pre-Service Teacher's Difficulties in Conceptual Understanding and Instructional Planning of Light Refraction (빛의 굴절에 대한 초등예비교사의 개념이해와 지도계획의 어려움 분석)

  • Lee, Jiwon
    • Journal of The Korean Association For Science Education
    • /
    • v.41 no.1
    • /
    • pp.11-18
    • /
    • 2021
  • The purpose of this study is to analyze the questions generated by elementary school pre-service teachers when reading the teacher's guide for the refraction of light, and to analyze the difficulties in understanding the concept and in making instructional plans. A total of 592 meaningful questions were generated by 283 elementary school pre-service teachers after reading the teacher's guide of 'light and lens' unit in the 6th grade of the 2015 revised curriculum. Of these, 306 questions are for understanding the concept of physics and 286 are pedagogical questions. As a result of the analysis, in terms of understanding the concept of physics, the elementary school pre-service teachers encounter difficulties in understanding the concept of the 'cause' of the phenomenon suggested in the textbook, such as the cause of refraction, the reason for scattering light, and the cause of the image change depending on the focal length of the convex lens. In terms of instructional planning, it was followed by questions about how to explain concepts, questions about not being able to explain concepts to elementary school students and having to teach only phenomena, specific explanation methods for specific concepts, and experimental methods. Although the teacher's guide contains various explanations and supplementary materials to help teachers understand the concept, it can be seen that there are many elementary pre-service teachers who cannot answer questions about some concepts even after reading the guide. For concepts with a high frequency of questions, it is necessary to prepare a tutorial that is more understandable. In the instructional plan, there were many questions about teaching methods and experimental methods, so it is necessary to provide more examples and specific experimental methods for explaining concepts in the teacher's guide.