Browse > Article
http://dx.doi.org/10.3795/KSME-B.2004.28.12.1557

Changes of the Flame Temperature and OH Radical in the Unsteady Extinction Process  

Lee, Uen-Do (한국과학기술원 대학원 기계공학과)
Lee, Ki-Ho (현대자동차 연구소)
Oh, Kwang-Chul (한국과학기술원 대학원 기계공학과)
Shin, Hyun-Dong (한국과학기술원 기계공학과)
Publication Information
Transactions of the Korean Society of Mechanical Engineers B / v.28, no.12, 2004 , pp. 1557-1566 More about this Journal
Abstract
A flame extinction phenomenon is a typical unsteady process in combustion. Flame extinction is characterized by various physical phenomena, such as convection, diffusion, and the production of heat and mass. Flame extinction can be achieved by either increasing the strain rate or curvature, by diluting an inert gas or inhibitor, or by increasing the thermal or radiant energy loss. Though the extinction is an inherently transient process, steady and quasi-steady approaches have been used as useful tools for understanding the flame extinction phenomenon. Recently, unsteady characteristics of flames have been studied by many researchers, and various attempts have been made to understand unsteady flame behavior, by using various extinction processes. Representative parameters for describing flame, such as flame temperature, important species related to reactions, and chemi-luminescence of the flame have been used as criterions of flame extinction. In these works, verification of each parameter and establishing the proper criterions of the extinction has been very important. In this study, a time-dependent flame temperature and an OH radical concentration were measured using optical methods, and the instantaneous change of the flame luminosity was also measured using a high-speed ICCD (HICCD) camera. We compare the unsteady extinction points obtained by three different methods, and we discuss transient characteristics of maximum flame temperature and OH radical distribution near the extinction limit.
Keywords
Rayleigh Scattering Method; OH LIF Method; Unsteady Extinction Process;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Seo, J. I., Kim, N. I., Oh, K. C. and Shin, H. D., 2003, 'An Experimental Study on the Effects of Concentration Gradient and Mean Velocity on the Liftoff Characteristics of the Triple Flame,' Trans. of the KSME B, Vol. 27, No. 8, pp. 1061-1070   과학기술학회마을   DOI
2 Yoon, J. H. and Lee, S. J., 2000, 'Temperature Field Measurement of Non-Isothermal Jet Flow Using LIF Technique,' Trans. of the KSME B, Vol. 24, No. 10, pp. 1399-1408
3 Katta, V. R., Meyer, T. R., Brown, M. S., Gord, J. R. and Roquemore, W. M., 2004, 'Extinction Criterion for Unsteady, Opposing Jet Diffusion Flames,' Combust. Flame 137, pp. 198-221   DOI   ScienceOn
4 Lee, E. J., Oh, K. H. and Shin, H. D., 2000, 'Experiments on The Transient Effect of Evolving Jet Diffusion Flames,' Proc. Comb. Inst. 28, pp. 2079-2084   DOI   ScienceOn
5 Brown, T. M., Pitz, R. W. and Sung, C. J., 1998, 'Oscillatory Stretch Effects on The Structure and Extinction of Counterflow Diffusion Flames,' Proc. Comb. Inst. 27, pp. 703-710   DOI
6 Thevenin, D., Renard, P. H., Rolon, J. C. and Candle, S., 1998, 'Extinction Processes During a Nonpremixed Flame-Vortex Interaction,' Proc. Comb. Inst. 27, pp. 719-726   DOI
7 Santoro, V. S., Kyritsis, D. C., Linan, A. and Gomez, A., 2000, 'Vortex-Induced Extinction Behavior in Methanol Gaseous Flames: a Comparison with Quasisteady Extioncion,' Proc. Comb. Inst. 28, pp. 2109-2116   DOI   ScienceOn
8 Rolon, J. C., Veynante, D., Martin, J. P. and Dust, F., 1991, 'Counter Jet Stagnation Flow,' Experiments in Fluids 11, pp. 313-324   DOI
9 Korusoy, E. and Whitelaw, J. H., 2002, 'Extinction and Relight in Opposed Flames,' Experiments in Fluids 33, pp. 75-89   DOI   ScienceOn
10 Kee, R. J., Rupley, F. M., Miller, J. A., Coltrin, M. E., Grcar, J. F., Meeks, E., Moffat, H. K., Lutz, A. E., Dixon-Lewis, G., Smooke, M. D., Warnatz, J., Evans, G. H., Larson, R. S., Mitchell, R. E., Petzold, L. R., Reynolds, W. C., Caracotsios, M., Stewart, W. E., Glarborg, P., Wang, C. and Adigun. O., 2000, CHEMKIN Collection, Release 3.6, Reaction Design. Inc. San Diego, CA
11 Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Song, Soonho, Gardiner, W. C. Jr., Lissianski, V. V. and Qin, Z., 2000, GRI-Mech 3.0., http://www.me.berkeley.edu/gri_mech/
12 Lee, B. J., Gil, Y. S., Han, J. W. and Chung, S. H., 1996, 'Hydroxyl Radical Measurements in the Flame Using LIF,' Trans. of the KSME B, Vol. 20, No. 2, pp. 710-719   과학기술학회마을
13 Jin, S. H., Nam, G. J., Kim, H. S., Chang, N. N., Park, S. H., Kim, U., Park, K. S., Sim, K. H. and Kim, K. S., 1996, 'Planar Measurements of Oh and $O_2$ Number Density in Premixed $C_3H_8/O_2$ Flame Using Laser Induced Predissociative Fluorescence,' Trans. of the KSME B, Vol. 20, No. 12, pp. 4044-4052   과학기술학회마을
14 Jeong, E, H., Yoon, S. Y. and Kim, K. C., 2003, 'Simultaneous Measurement of Velocity and Concentration Field in a Stirred Mixer Using PIV/LIF Technique,' Trans. of the KSME B, Vol. 27 No. 4 pp. 504-510   과학기술학회마을   DOI
15 Konnov, A., Idir, M., Delafau, J. L. and Vovelle, C., 1996, 'Experimental Study of Extinction of Nonadiabatic Counter-Flow Premixed Flames,' Combust. Flame 105, pp. 308-320   DOI   ScienceOn
16 Namer, I. and Schefer, R. W., 1985, 'Error Estimates for Rayleigh Scattering Density and Temperature Measurements in Premixed Flames,' Experiments in Fluids 3, pp. 1-9   DOI
17 Chelliah, H. K., Law, C. K., Ueda, T., Smook, M. D. and Williams, F. A., 1990, 'An Experimental and Theoretical Investigation of the Dilution, Pressure, and Flow-Field Effects on the Extinction Condition of Methane-Air-Nitrogen Diffusion Flames,' Proc. Comb. Inst 23, pp. 503-511
18 Darabiha, N., 1992, 'Transient Behavior of Laminar Counterflow Hydrogen-Air Diffusion Flames with Complex Chemistry,' Combust. Sci. and Tech. 86, pp. 163-181   DOI   ScienceOn
19 Oh, C. B. and Lee, C. E. 2003, 'Extinction in a Counterflow Nonpremixed Flame Interacting with a Vortex,' Trans. of the KSME B, Vol. 27, No. 10, pp. 1401-1411   과학기술학회마을   DOI
20 Oh, C. B. and Lee C. E. 2001, 'Numerical Simulation of Unsteady $CH_4$/ Air Jet Diffusion Flame,' Trans. of the KSME B, Vol. 25, No. 8, pp. 1087-1096   과학기술학회마을
21 Du, J. and Azelbaum, R. L., 1996, 'The Effects of Flame Structure on Extinction of $CH_4-O_2-N_2$ Diffusion Flames,' Proc. Comb. Inst 26, pp. 1137-1142   DOI
22 Puri, I. K. and Seshadri, K., 1986, 'Extinction of Diffusion Flames Burning Diluted Methane and Diluted Propane in Diluted Air,' Combust. Flame 65, pp. 137-150   DOI   ScienceOn
23 Pitts, W. M. and Blevins, L. G., 1999, 'An Investigation of Extinguishment by Thermal Agents Using Detailed Chemical Modeling of Opposed-Flow Diffusion Flames,' Halon Options Technical Working Conference, pp. 145-156
24 Peters, N., 1983, 'Local Quenching Due to Flame Stretch and Non-Premixed Turbulent Combustion,' Combust. Sci. and Tech. 30, pp. 1-17   DOI   ScienceOn
25 Peters, N., 1984, 'Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion,' Progress in Energy and Combustion Science, Vol. 10, pp.319-339   DOI   ScienceOn
26 Tsuji, H., 1982, 'Counter-Flow Diffusion Flames,' Prog. Energy Combust. Sci. 8, pp. 93-119   DOI   ScienceOn
27 Dixon-Lewis, G. and Massaghi, M., 1988, 'Structure and Extinction Limits of Counter-Flow Diffusion Flames of Hydrogen-Nitrogen Mixtures in Air,' Proc. Comb. Inst 22, pp. 1461-1470
28 Williams, F. A., 2000, 'Progress in Knowledge of Flamelet and Extinction,' Prog. Energy Combust. Sci. 26, pp. 657-682   DOI   ScienceOn
29 Linan, A., 1974, 'The Asymptotic Structure of Counter-Flow Diffusion Flames for Large Activation Energies,' Acta Astronautica 1, pp. 1007-1039   DOI   ScienceOn
30 Ishizuka, S. and Tsuji, H., 1981, 'An Experimental Study of Effect of Inert Gases in Extinction of Laminar Diffusion Flames,' Proc. Comb. Inst 18, pp. 695-703   DOI