• Title/Summary/Keyword: Scattering Body

Search Result 109, Processing Time 0.023 seconds

A Study of the Human Body Safety and Effectiveness for Scattering Objects on Missile Ejection Round (유도탄 사출시 비산물로 인한 인체 안전과 영향성에 관한 연구)

  • Chung, Sung-Hak;Yun, Hyo-Suk
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.180-183
    • /
    • 2014
  • The purpose of this study is to assess for scattering object for the missile ejection round due to analysis of the human body effectiveness safely. To achieve this goal the measurement method of scattering objects by comparative 2 measurement methods studied, the risk of scattering of the object is evaluated. Result of this study, applied in Europe and Japan, based on the safety criteria for the human body effectiveness when missile ejection round. data showed is not effectiveness to the operator's body safely. Data showed that satisfies the safety criteria for missile ejection round in Europe and Japan through the similarity for the case studies. In case of these safety criteria does not exist regulation in South Korea, this study will be referred as guidelines are considered.

Use of Rigid Scattering Body in the use of NAH based on the inverse BEM (역경계요소법에 근거한 근접 음향 홀로그래피에서 강체 산란체의 이용)

  • 김성일;정지훈;이정권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.486-489
    • /
    • 2004
  • The NAH based on the inverse BEM is used to reconstruct the source field, which is advantageous in dealing with the irregular source. In the implementation of this technique, a large number of pressure measurements is required because an over-determined pressure data set is required. These conditions accordingly cause the increase of measurement time and associated effort along with the error due to mal-positioning. The purpose of this study is to reduce such inconveniences: Instead of increasing the number of field pressure data, the number of transfer paths between the source and the receiver is increased by placing rigid scattering body in-between the source and receiver. For validating the usefulness and effectiveness of the method, the numerical analyses of interior problem are demonstrated. As a result, it is thought that the proposed method enables the measurement at smaller number of sensor positions and the monitoring of surface vibration with less experimental effects than before.

  • PDF

A New Method for Extracting Resonance Information in Acoustic Wave Resonance Scattering (음향파 공명 산란의 새로운 해석방법)

  • 이희남;박영진
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.409-417
    • /
    • 1999
  • A new method is proposed for the isolation of resonances from scattered waves for the isolaton of resonances from scattered waves for acoustic wave resonance scattering problems. The resonance scattering function consisting purely of resonance information is defined. Acoustic wave scattering from a variety of submerged bodies is numerically analyzed. The classical resonance scattering theory (RST) and the new method compute identical magnitudes of the resonances from each partial wave, however, the phases are significantly different. The exact $\pi$-radians phase shifts through the resonance and anti-resonance frequencies show that the proposed method properly extracts the vibrational resonance information of the scatterer. Due to the differences in phases of the resonances from each partial wave, the new method and RST generate different total resonance spectra.

  • PDF

Prediction of Radiative Heat Transfer in a Three-Dimensional Gas Turbine Combustor with the Finite-Volume Method (유한체적법에 의한 복잡한 형상을 갖는 3차원 가스터빈 연속기내의 복사열 전달 해석)

  • Kim, Man-Yeong;Baek, Seung-Uk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2681-2692
    • /
    • 1996
  • The finite-volume method for radiation in a three-dimensional non-orthogonal gas turbine combustion chamber with absorbing, emitting and anisotropically scattering medium is presented. The governing radiative transfer equation and its discretization equation using the step scheme are examined, while geometric relations which transform the Cartesian coordinate to a general body-fitted coordinate are provided to close the finite-volume formulation. The scattering phase function is modeled by a Legendre polynomial series. After a benchmark solution for three-dimensional rectangular combustor is obtained to validate the present formulation, a problem in three-dimensional non-orthogonal gas turbine combustor is investigated by changing such parameters as scattering albedo, scattering phase function and optical thickness. Heat flux in case of isotropic scattering is the same as that of non-scattering with specified heat generation in the medium. Forward scattering is found to produce higher radiative heat flux at hot and cold wall than backward scattering and optical thickness is also shown to play an important role in the problem. Results show that finite-volume method for radiation works well in orthogonal and non-orthogonal systems.

Effect of shear on poly(styrene-b-isoprene) copolymer micelles

  • Bang, Joon-A;Lodge, Timothy P.
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.227-232
    • /
    • 2007
  • The use of various shearing apparatuses to study the phase behavior of poly(styrene-b-isoprene) diblock copolymer micelles is described. A DMTA rheometer was modified so that one can apply oscillatory shear and obtain the scattering pattern along the shear gradient direction. A cone and plate shear cell was designed to access scattering along the shear vorticity direction, and both oscillatory and steady shear can be applied. The most popular way to employ steady shear on relatively low viscosity fluids is to use a Couette cell, because a high shear rate can be readily achieved without disturbing the sample by overflow. In this work, oscillatory shear was used to obtain a single crystal-like scattering pattern, and thereby to examine the mechanism of the thermotropic transition between face-centered cubic (fcc) and body-centered cubic (bcc) lattices. By applying the steady shear, the response of the fcc lattices to various shear rates is discussed.

Electromagnetic Scattering of Inhomogeneous Dielectric Body using Tetrahedral Modeling Method (체적요소기법을 이용한 비균질 유전체의 산란특성)

  • Bae, Geon-Sik;Kim, Che-Young
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1747-1749
    • /
    • 1996
  • A method for calculating the electromagnetic scattering from arid internal field distribution of arbitrally, shaped, inhomogeneous dielectric bodies is presented. Tetrahedral volume elements are used to model a scattering body in which the electrical parameters are defined constant in each tetrahedron. Special basis functions are defined within the tetrahedral volume elements to satisfy the boundary condition at interfaces between different dielectric media. In order to test the accuracy of the solution by using the present method, it is applied to obtain the scattered field by the dielectric sphere. The accuracy of the fields calculated by using the tetrahedral cell method is found to be comparable to that of others.

  • PDF

Topology Optimization for Radiation and Scattering of Sound from a Thin-body (박판 구조물의 소음 방사 및 산란에 대한 위상 최적 설계)

  • 이제원;왕세명
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1032-1037
    • /
    • 2003
  • Although the holes on the shell case are very important fer the acoustic performance, it is difficult to solve the problem because the case includes thin bodies. Hence, in the past, only the method of trial and error, which depends on the engineer's intuition and experience, was available fur the design of holes. Many researchers have tried to solve the thin-body acoustic problems, since the conventional boundary element method (BEM ) using the Helmholtz integral equation fails to yield a reliable solution fer the numerical modelling of radiation anti scattering of sound from thin bodies. In the area of the analysis of thin-body acoustic problem, three approaches are generally used; the multi-domain BEM, the indirect variational BEM, and the normal derivative integral equation And there has been just a f9w study reported on the design optimization for the acoustic radiation problems by using only the conventional BEM. For the thin-body acoustics, however, no further study in the optimization fields has been reported. In this research, the normal derivative integral equation is adopted as an analysis formulation in the thin-body acoustics, and then used fur the optimization. The analytical approaches for the design of holes are proposed by using a topology optimization technique and a genetic algorithm. The proposed approaches are implemented and validated using numerical examples.

  • PDF

Precise Numerical Simulation of Microwave Scattering from Natural Deciduous Leaves Using the Method of Moment

  • Oh Yisok;Hong Jin-Young
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.586-589
    • /
    • 2004
  • A numerical algorithm using the Method of Moments (MoM) is introduced to compute precisely the scattering matrices of very thin deciduous leaves in this paper. At first, a dyadic Green's function was formulated and an integral equation for a volumetric current distribution in a lossy dielectric body. Then, the MoM was applied to the scattering problem with a specific technique to handle the numerical poles. The accuracy of the numerical technique was verified by examining the technique with various ways, and used to examine the validity regions of the classical analytical models.

  • PDF

Examination of Theoretical Acoustic Scattering Models for Copepods in an Acoustical Zooplankton Biomass Survey (음향자원조사를 위한 동물플랑크톤 요각류의 음향산란이론모델의 검토)

  • Hwang, Bo-Kyu;Shin, Hyeon-Ok;Lee, Dae-Jae;Lee, You-Won
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.4
    • /
    • pp.380-385
    • /
    • 2010
  • Several theoretical acoustic scattering models were applied to estimate the target strength (TS) for assessing the biomass of zooplankton, to overcome the difficulty of direct measurements. Acoustical scattering characteristics of copepods were estimated using three theoretical models, and the application of the models was evaluated for four frequencies of a scientific echo sounder. The scattering directivity by the body shapes of copepods at 200 kHz and 420 kHz was significantly affected by TS patterns. Averaged TS, however, were similar at higher frequencies. Consequently, a low frequency model, such as a truncated fluid sphere model, provides a good acoustical biomass estimation. The regressions of TS and 30 logL were < $TS_{200\;kHz}$ >= 30logL-118.4 ($R^2=0.716$) and < $TS_{420 kHz}$ > =30 logL-108.8 ($R^2=0.758$), respectively.

ESTIMATE OF CHLOROPHYLL CONCENTRATION FROM OCEAN COLOR: UNCERTAINTY ASSOCIATED WITH UNKNOWN BACKSCATTERING

  • Zhang, Xiaodong;Kirilenko, Andrei
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.446-449
    • /
    • 2006
  • It is backscattering of solar radiation by water body that makes ocean color observable from above, either by airplanes or satellites. Given the very low direct contribution to backscattering by phytoplankton cells, it is curious why the retrieval of phytoplankton concentration from remotely observed ocean color is evidently successful. From semianalytical bio-optical models, a dataset is created of spectral absorption, scattering and backscattering coefficients as a function of chlorophyll concentration. Four scenarios are considered, 1) only molecular and no particle scattering, 2) random particle backscattering uncorrelated with chlorophyll concentration, 3) constrained random particle scattering with known backscattering ratio, and 4) constrained random scattering with random backscattering ratio. Scenario 1 only introduces moderate errors of -20% - 90%. And for scenarios 3 and 4, the errors are largely within 30% and 100%. Scenario 2 introduces the largest errors, with the retrieved chlorophyll concentration virtually uncorrelated with the true values, implying the backscattering must somehow be related to the trophic state. The results of the study suggested These 3 cases confirmed that while it is the absorption by phytoplankton that in large part decides the accuracy of chlorophyll concentration retrieval, for the success of monitoring of global ocean primary productivity we have to improve our knowledge on particle backscattering.

  • PDF