• Title/Summary/Keyword: Scattered Ray

Search Result 215, Processing Time 0.027 seconds

THE STUDY OF PATIENT EXPOSURE AND PROTECTION FROM DENTAL RADIOGRAPHY (치과 X선 촬영에 있어서 환자에 대한 피폭과 방어에 관한 연구)

  • Park T. W.
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.9 no.1
    • /
    • pp.25-31
    • /
    • 1979
  • The utilization of x-ray for diagnosis and examination is increasing by about 5-15% every year, therefore, it would be mandatory to protect the patients from exposures and so, studies in this field are performed even now. In dental field, the area of irradiation is limited any to the head and neck area, but the irradiated angle is varied following the objected tooth, so the adjacent structures lens and thyroid gland would be fragile to radiation. And the scattered radiation is one of the complicated problems in the protection because of specificity of dental x-ray and its object structures. The author, by using TLD (Thermo luminescent Dosimeter; Teledyne Isotopes-Model 7300, Element; TLD 200(CaF₂:Dy) and Capintec(Capintec Model 192, PM-30 Diagnostic chamber 28㎖ active volume), tried a measurement of air dose distribution of the scattered radiation and the irradiated dose of lens and thyroid gland under the condition of taking the film on the left maxillary molar. The results were as follows: 1. The half value layer of adapted dental x-ray machine was measured, and is 1.44㎜ Al. 2. The time of irradiation on the left maxillary molar in the Alderson Rando Phantom, the measured doses of left and right lens, and thyroid gland were 8,9mR, 1,2mR and 2,8mR. Under the same conditions, the scattered radiation at the distance of 1 meter from the phantom were 84 μR at the front side, 11μR at the back side, 18μR at the right side and 72μR at the left side. 3. Under the same conditions, the dose showed higher value by about 5% in the presence of object(phantom) than in the case of absence.

  • PDF

Radiation safety for pain physicians: principles and recommendations

  • Park, Sewon;Kim, Minjung;Kim, Jae Hun
    • The Korean Journal of Pain
    • /
    • v.35 no.2
    • /
    • pp.129-139
    • /
    • 2022
  • C-arm fluoroscopy is a useful tool for interventional pain management. However, with the increasing use of C-arm fluoroscopy, the risk of accumulated radiation exposure is a significant concern for pain physicians. Therefore, efforts are needed to reduce radiation exposure. There are three types of radiation exposure sources: (1) the primary X-ray beam, (2) scattered radiation, and (3) leakage from the X-ray tube. The major radiation exposure risk for most medical staff members is scattered radiation, the amount of which is affected by many factors. Pain physicians can reduce their radiation exposure by use of several effective methods, which utilize the following main principles: reducing the exposure time, increasing the distance from the radiation source, and radiation shielding. Some methods reduce not only the pain physician's but also the patient's radiation exposure. Taking images with collimation and minimal use of magnification are ways to reduce the intensity of the primary X-ray beam and the amount of scattered radiation. It is also important to carefully select the C-arm fluoroscopy mode, such as pulsed mode or low-dose mode, for ensuring the physician's and patient's radiation safety. Pain physicians should practice these principles and also be aware of the annual permissible radiation dose as well as checking their radiation exposure. This article aimed to review the literature on radiation safety in relation to C-arm fluoroscopy and provide recommendations to pain physicians during C-arm fluoroscopy-guided interventional pain management.

X-Rays through the Looking Glass: Mobile Imaging Dosimetry and Image Quality of Suspected COVID-19 Patients

  • Schelleman, Alexandra;Boyd, Chris
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.3
    • /
    • pp.120-126
    • /
    • 2021
  • Background: This paper aims to evaluate the clinical utility and radiation dosimetry, for the mobile X-ray imaging of patients with known or suspected infectious diseases, through the window of an isolation room. The suitability of this technique for imaging coronavirus disease 2019 (COVID-19) patients is of particular focus here, although it is expected to have equal relevance to many infectious respiratory disease outbreaks. Materials and Methods: Two exposure levels were examined, a "typical" mobile exposure of 100 kVp/1.6 mAs and a "high" exposure of 120 kVp/5 mAs. Exposures of an anthropomorphic phantom were made, with and without a glass window present in the beam. The resultant phantom images were provided to experienced radiographers for image quality evaluation, using a Likert scale to rate the anatomical structure visibility. Results and Discussion: The incident air kerma doubled using the high exposure technique, from 29.47 µGy to 67.82 µGy and scattered radiation inside and outside the room increased. Despite an increase in beam energy, high exposure technique images received higher image quality scores than images acquired using lower exposure settings. Conclusion: Increased scattered radiation was very low and can be further mitigated by ensuring surrounding staff are appropriately distanced from both the patient and X-ray tube. Although an increase in incident air kerma was observed, practical advantages in infection control and personal protective equipment conservation were identified. Sites are encouraged to consider the use of this technique where appropriate, following the completion of standard justification practices.

A Study of Thermoplastic Masks Deformation for Reducing Scattered Ray in Radiation Therapy (방사선치료용 열가소성 플라스틱 마스크의 산란선 감소를 위한 마스크 변형에 관한 연구)

  • Seong-Min, Lee;Jun-Young, Lee;Jae-Hyun, Kim;Kyeong-Hwan, Jeong;Jeong-Min, Seo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.63-69
    • /
    • 2023
  • In head and neck radiation therapy, the thermoplastic immobilization mask used for fixing the patient's posture and reproducibility causes scattered rays by being in close contact with the skin. To investigate the increase in skin dose due to the scattered rays generated from the immobilization mask, we evaluated dose reduction by decreasing contact between face skin and immobilization mask in computerized radiotherapy planning system with CT scanned images. In addition, to confirm the reproducibility problem of the setup due to the decrease in the cover area of immobilizing, the difference of each setup was confirmed using DRR and CT images. As the mask area covered for immobilizing was reduced, the dose on the skin surface significantly decreased, and it was confirmed that there was no significant difference in reproducibility even if the entire face was not covered and fixed.

The Study on Scattered Radiation Effects According to Acquisition of X-ray Imaging using Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 X선 의료영상 획득 시 산란선 발생 영향 연구)

  • Park, Ji-Koon;Kang, Sang-Sik;Yang, Seung-Woo;Heo, Ye-Ji;Kim, Kyo-Tae
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.5
    • /
    • pp.549-555
    • /
    • 2018
  • The medical imaging technique images the contrast formed based on the difference in absorption coefficient of X-rays which changes according to the composition and thickness of the object. At this time, not only primary rays entering the image detector but also scattered rays greatly affect the image quality. Therefore, in this paper, Forward scattering rate and Scattered to primary ratio analysis were performed through Monte Carlo simulation in order to consider influence of scattered ray generated according to object thickness and radiation exposure area change on image quality. In the study, the Forward scattering rate corresponding to the thickness of the object was analyzed at a maximum of 15.3%p and the Scattered to primary ratio was analyzed at 2.00 to 4.54, but it was analyzed as maintaining a constant value for radiation exposure area change. Based on these results, the thickness of the object should be considered as a factor influencing the quality of the image, but radiation exposure area verified that it is a factor that does not affect the image quality. We believe that the results of this research can be utilized as basic information of scattered radiation to improve image quality.

A Study on Scattered Dose in Operation Room by C-arm Unit (수술중 C-arm 장치의 사용에 따른 공간선량 분포에 관한 연구)

  • An, Sung-Min;Oh, Jung-Hwan;Kim, Sung-Chul
    • Journal of radiological science and technology
    • /
    • v.23 no.2
    • /
    • pp.69-73
    • /
    • 2000
  • This paper studied a C-arm's exposure condition and measured scatter rays by thickness and distance. This study reached the following conclusion. 1. Approrimately exposure dose for a patient using fluoroscopy is as follows : 2. Mostly, an operating room was not shielding by lead and operator put on only apron without thyroid and facial part protection. 3. 0.5 mmPb equivalent's apron shielded about 99% of scattered rays at 60 cm from x-ray tube. 4. Scattered rays are depended on distance and thickness so operators are should be careful when using fluoroscopy by C-arm and if possible use high frequency equipment that has a large output.

  • PDF

A ray-based approach to scattering from inhomogeneous dielectric objects (전파경로 투적에 의한 비균질 유전체의 전자파 산란)

  • Kim, Hyeongdong
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.2
    • /
    • pp.31-37
    • /
    • 1995
  • A ray-based approach is developed to calculate the scattering from inhomogeneous dielectric objects. This approach is a natural extension of the "shooting and bouncing ray(SBR)" technique developed earlier for calculating the radar cross section of cavity structures and complex targets. In this formulation, a dense grid of rays representing the incident field is shot toward the scatterer. The curved trajectory, amplitude, phase and polarization of the ray fields inside the inhomogeneous object are computed numerically based on the laws of geometrical optics. The contributions of the exting rays to the exterior scattered field are then calculated by using the equivalence principle in conjunction with " a ray-tube integration" scheme. The ray-based approach is applied for the effect of an arcjet plasma plume on satellite reflector performance and backscattering from inhomogeneous objects.

  • PDF

Shielding for Critical Organs and Radiation Exposure Dose Distribution in Patients with High Energy Radiotherapy (고 에너지 방사선치료에서 환자의 피폭선량 분포와 생식선의 차폐)

  • Chu, Sung-Sil;Suh, Chang-Ok;Kim, Gwi-Eon
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • High energy photon beams from medical linear accelerators produce large scattered radiation by various components of the treatment head, collimator and walls or objects in the treatment room including the patient. These scattered radiation do not provide therapeutic dose and are considered a hazard from the radiation safety perspective. Scattered dose of therapeutic high energy radiation beams are contributed significant unwanted dose to the patient. ICRP take the position that a dose of 500mGy may cause abortion at any stage of pregnancy and that radiation detriment to the fetus includes risk of mental retardation with a possible threshold in the dose response relationship around 100 mGy for the gestational period. The ICRP principle of as low as reasonably achievable (ALARA) was recommended for protection of occupation upon the linear no-threshold dose response hypothesis for cancer induction. We suggest this ALARA principle be applied to the fetus and testicle in therapeutic treatment. Radiation dose outside a photon treatment filed is mostly due to scattered photons. This scattered dose is a function of the distance from the beam edge, treatment geometry, primary photon energy, and depth in the patient. The need for effective shielding of the fetus and testicle is reinforced when young patients ate treated with external beam radiation therapy and then shielding designed to reduce the scattered photon dose to normal organs have to considered. Irradiation was performed in phantom using high energy photon beams produced by a Varian 2100C/D medical linear accelerator (Varian Oncology Systems, Palo Alto, CA) located at the Yonsei Cancer Center. The composite phantom used was comprised of a commercially available anthropomorphic Rando phantom (Phantom Laboratory Inc., Salem, YN) and a rectangular solid polystyrene phantom of dimensions $30cm{\times}30cm{\times}20cm$. the anthropomorphic Rando phantom represents an average man made from tissue equivalent materials that is transected into transverse 36 slices of 2.5cm thickness. Photon dose was measured using a Capintec PR-06C ionization chamber with Capintec 192 electrometer (Capintec Inc., Ramsey, NJ), TLD( VICTOREEN 5000. LiF) and film dosimetry V-Omat, Kodak). In case of fetus, the dosimeter was placed at a depth of loom in this phantom at 100cm source to axis distance and located centrally 15cm from the inferior edge of the $30cm{\times}30cm^2$ x-ray beam irradiating the Rando phantom chest wall. A acryl bridge of size $40cm{\times}40cm^2$ and a clear space of about 20 cm was fabricated and placed on top of the rectangular polystyrene phantom representing the abdomen of the patient. The leaf pot for testicle shielding was made as various shape, sizes, thickness and supporting stand. The scattered photon with and without shielding were measured at the representative position of the fetus and testicle. Measurement of radiation scattered dose outside fields and critical organs, like fetus position and testicle region, from chest or pelvic irradiation by large fie]d of high energy radiation beam was performed using an ionization chamber and film dosimetry. The scattered doses outside field were measured 5 - 10% of maximum doses in fields and exponentially decrease from field margins. The scattered photon dose received the fetus and testicle from thorax field irradiation was measured about 1 mGy/Gy of photon treatment dose. Shielding construction to reduce this scattered dose was investigated using lead sheet and blocks. Lead pot shield for testicle reduced the scatter dose under 10 mGy when photon beam of 60 Gy was irradiated in abdomen region. The scattered photon dose is reduced when the lead shield was used while the no significant reduction of scattered photon dose was observed and 2-3 mm lead sheets refuted the skin dose under 80% and almost electron contamination. The results indicate that it was possible to improve shielding to reduce scattered photon for fetus and testicle when a young patients were treated with a high energy photon beam.

Influence of X-ray Tube Voltage and Object on X-ray Quality and Dose (X선촬영에 있어서 관전압과 피사체가 선질 및 선량에 미치는 영향의 실험)

  • Huh, Joon;Kim, Chang-Kyun;Kang, Hong-Seok;Kim, Chung-Min
    • Journal of radiological science and technology
    • /
    • v.7 no.1
    • /
    • pp.41-46
    • /
    • 1984
  • Authors investigated an influence of x-ray tube voltage on x-ray quality and dose with using objects of various thickness, and obtained the results as follows: 1. Radiographic effects were influenced by tube voltages and objects. 2. Dose decrement rates hade more influence upon primary-rays than total x-rays at lower tube voltages. 3. The quality of transmitted x-rays was affected by tube voltages and thickness of objects. 4. Scattered-ray contents were proportional to tube voltages with using grid.

  • PDF

Characteristics of Scattered Rays Depending on the Use of a Flattening Filter (선속평탄 여과판 사용 유무에 따른 산란선 특성)

  • Jin, SeongJin;Park, ChulWoo;Je, Jaeyong
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.1
    • /
    • pp.15-19
    • /
    • 2016
  • This Study aims at measuring scattered rays depending on the use of a flattening filter when radiation is irradiated using a linear accelerator. measurement of the scattered rays, an ionization chamber was used, and the energy of the irradiated radiation was 6 MV and 10 MV. The ionization chamber was located at the spot 15 cm, 25 cm, 35 cm and 45 cm far away from the center of gantry rotation, and the scattered rays were measured according to whether a flattening filter was used or not and to the distance. As the result of investigation of 100 cGy about each energy, when the flattening filter was not used with 6 MV, it occurred at a low level of 65%, and with 10 MV at that of 55%. In other words, it's been concluded that when a flattening filter is not used for radiation dose of the parts around the critical organ, scattered rays generate in a small quantity, and it's a useful way to decrease the stochastic effect of radiation.