Control of scattered radiation is one of very important factors in the use of medical radiation. In general X-ray exam, the causes, measurement methods, and the kind of detectors of scattered rays within the radiation area are diverse. In this study, the dose of scattered ray was measured by changing the thickness of the polycarbonate phantom and the tube voltage. As a result of measurement of scattered radiation, the results show that the scattered dose significantly(p<.05) increased with growing of thickness of phantom in the tube voltage 40, 50 and 60 kVp(F(p)<.05, R2>64%). As tube voltage increased at all phantom thicknesses, the scattered dose also significantly(p<.05) increased(F(p)<.05, R2>69%). In cases where a significant correlation was shown, the coefficient of determination of more than 60% was shown in regression analysis. The results of this study can be used as data on scattered radiation dose according to the tube voltage and the object thickness in general X-ray imaging exam.
This paper uses a glass dosimeter to evaluate the lens-absorbed dose of scattered radiation generated in tomotherapy intensity modulated radiation therapy (IMRT). The head and neck portion of the rando phantom was subjected to a CT scan. The tomotherapy plan was designed to ensure delivery of the prescribed total 70 Gy day 2.2 Gy. With the lens portion of the glass dosimeter, a 5mm bolus was subjected to the scattered radiation treatment, and the dose was measured in each of the three megavoltage CT (MVCT) modes. The result is multiplied by 30 times and was determined once as the mean value. The measurement at the MVCT Coarse mode is RT mode 10.797 mGy, that for the Normal mode is 13.360 mGy, for the Fine mode is a maximum of 22.872 mGy, and for the treatment mode is 895.830 mGy. A small amount of scattered radiation in the MVCT is measured in the lens scattered radiation, but scattered radiation during treatment was measured to be near 1 Gy on the lens. Compared to a one-time radiation treatment of 2.2 Gy, the survey showed something unexpected in that it was half the value of that research to the patient. Therefore, will be aware of how much of an influence there will be on sensitive organs, such as the lens by scattered radiation generated during intensity modulated radiation therapy.
18MeV 선형가속기와 코발트 원격치료기를 사용하여 방사선 조사면적 내에 차폐물이 있는 경우, 차폐물에 의한 산란선이 선량분포에 미치는 영향에 관하여 고찰하여 다음과 같은 결과를 얻었다. 1. 차폐물이 이루는 각이 예각일수록 산란선의 효과는 더 크게 나타났다. 2. 차폐물의 넓이가 좁을수록 산란선의 효과는 더 크게 나타났다. 3. 조사면적에 따른 출력특성은 선형적이지만, 차폐물에 의한 출력특성은 조사면적에 대하여 선형가속기는 거의 무관하게 나타났으며, 코발트 원격치료기는 기울기가 적은 선형성을 나타내었다.
의료용 선형가속기에서 발생되는 고 에너지 광자선은 콜리메이터에 의하여 누출되며 치료두부(head), 콜리메이터, 환자를 포함한 치료실내의 모든 벽과 구성 물질들에 의하여 많은 산란선이 발생된다. 방사선치료는 종양에 따라서 최소한 40 Gy에서 80 Gy까지 조사되기 때문에 주위건강조직 특히 생식가능한 사람에 대한 생식선의 피폭선량을 평가하여야하며 종양치료에 영향을 주지 않은 범위에서 가능한 방법을 동원하여 피폭선량을 줄여야한다. 방사선 안전관리등의 기술기준에 관한 규칙(과학기술부령 제17호) 제3절 의료분야의 특별기준, 제44조(진료환자의 방사선 피폭)에 의하면 진료를 위한 환자 피폭선량을 합리적으로 달성 가능한 최소의 수준으로 유지하기 위한 절차를 구비하여야 하며 과학기술부 장관은 이에 준하는 의료시설 및 장비취급의 기술기준을 정하고 고시하여야한다고 명시 되어있다. 고 에너지방사선은 악성종양환자들의 치료성과를 향상시키는 동시에 치료후 방사선에 의한 만성효과가 발생 될 수 있기 때문에 주선속의 다양한 산란선과 누출선의 선질변화와 선량을 측정하고 생식선과 같은 주요장기를 산란선으로부터 차폐할 수 있는 기구를 제작 사용함으로서 방사선 피폭선량을 최대한으로 감소시킬 수 있었다. 고 에너지 방사선은 의료용 선형가속기(CLINAC 2100C/D. 2100C. 600C)에서 발생시킨 4, 6, 10 MV x-ray와 코발트원격치료장치(ALCYON II)의 코발트선원에서 방출되는 1.25 MV의 감마선을 이용하였다. 선량측정은 폴리스틸렌과 인체팬텀(Rando)사용하였으며 측정기는 이온함, TLD 및 필름을 사용하였다. 고 에너지 방사선에 의한 산란선은 장치의 콜리메이터 뿐만 아니라 치료실 벽 인체내부등 모든 방향에서 방사됨으로 납 벽돌에 의한 차폐율측정은 많은 변수를 가졌으며 고환인 경우에는 3면이 모두 차폐되도록 항아리모양으로 제작하였다. 태아인 경우 태아가 위치하고 있는 골반위에 육교모양의 선반을 만들고 그 위에 납 벽돌을 장치하도록 고안하였다. Co-60 감마선, 4 MV x-선, 10 MV x-선에서 발생되는 누출선량과 산란선량에 의한 평균 피폭선량은 조사면 중심으로부터 10, 30, 60cm 거리에서 조사면내 최대선량에 대하여 각각 $10^{-2},\;10^{-3},\;10^{-4}$의 비율로 측정되었으며 거리에 따라 지수함수로 줄어들었다. 흉부에 국한된 종양을 10 MV x-ray, $12{\times}12 cm^2$ 조사면으로 치료하였을 때 자궁에 받는 피폭선량은 0.9 mGy/Gy이며 고환이 받는 피폭선량은 0.6 mGy/Gy 이었으며 체장과 신장은 각각 4.8 mGy/Gy 와 2.5 mGy/Gy이다 10 MV x-선, $14{\times}14cm^2$ 조사면 경계로부터 10 cm 밖에서 납벽돌의 반가층 두께는 약 9.0 mm 이였고 20cm 밖에서는 반가층 두께가 약 6.5 mm로 측정되었다. 복부에 위치한 악성종양을 60 Gy 조사하였을 경우 태아가 위치하고 있는 자궁의 피폭선량은 약 370 mGy이고 이곳을 10 mGy이하가 되도록 차폐하려면 약 6.2 cm두께의 납 벽돌을 자궁위에 장착하여야 하며 골반치료시 고환에 10 mGy이하가 되도록 차폐하려면 약 5 cm 두께의 납 항아리가 요구된다. 고 에너지 고 준위 방사선치료시 고환은 3면을 항아리모양으로 차폐할 수 있어 피폭선량을 상당히 줄일 수 있으며 자궁인 경우 체내에서 산란된 선량의 차폐는 불가능하였다.
Mammography, conducted every two years, causes cancer due to regular exposure to radiation while reducing rate of death caused by breast cancer. The study evaluates the effect of breast shielding apron made to shield off scattered radiation that occurs to the breast when the opposite side breast is mammogramed. AGD was measured using ACR phantom, composed of 50% mammary glands and 50% fat, and radiation was measured before and after wearing the apron on the breast when the opposite side of the breast is mammogramed. When CC direction mammography was conducted to a breast, the AGD was 1.84 mGy. When CC direction and MLO direction mammography were done to a breast, the average dose detected from the opposite side breast from four directions(top to bottom and medial to lateral) was $140{\mu}Gy$ with maximum dose of $256{\mu}Gy$ at medial side. After putting on the apron, the dose, caused by scattered radiation, was not detected from any of the four directions. Using of breast shielding apron is expected to minimize the radiation exposure by blocking scattered radiation to the breast shielded, when mammography is done to the opposite side breast.
Radiation protection in the scrotum to reduce the risk of genetic effect in the future is very important. This study aimed to measure the scrotal dose outside the treatment fields by using the radio-photoluminescence glass dosimeter (RPLGD). The characteristics of RPLGD model GD-302M were studied. Scattered dose to scrotum was measured in one liposarcoma case with the prescribed dose of 60 Gy. RPLGDs were placed in three different locations: one RPLGD was positioned at the posterior area which closer to the scrotum, and the other two RPLGDs were placed between the penis and the scrotum. Three RPLGDs were employed in each location. The scattered doses were measured in every fraction during the whole course of treatment. The entire number of 100 RPLGDs showed the uniformity within ±2%. The signal from RPLGD demonstrated linear proportion to the radiation dose (r = 0.999). The relative energy response correction factor was 1.05. The average scrotal dose was 4.1 ± 0.9 cGy per fraction. The results presented a wide range since there was a high uncertainty during RPLGD placement. The total scrotal dose for the whole course of treatment was 101.9 cGy (1.7% of the prescribed dose). The RPLGD model GD-302M could be used to measure scattered dose after applying the relative energy correction factor.
Wilson Hrangkhawl;Winniecia Dkhar;T.S. Madhavan;S. Sharath;R. Vineetha;Yogesh Chhaparwal
Journal of Radiation Protection and Research
/
제48권1호
/
pp.15-19
/
2023
Background: Cone beam computed tomography (CBCT) is a specialized medical equipment and plays a significant role in the diagnosis of oral and maxillofacial diseases and abnormalities; however, it is attributed to risk of exposure of ionizing radiation. The aim of the study was to estimate and determine the amount of scattered radiation dose to the thyroid gland in dental CBCT during maxilla and mandible scan. Materials and Methods: The average scattered radiation dose for i-CAT 17-19 Platinum CBCT (Imaging Sciences International) was measured using a Multi-O-Meter (Unfors Instruments), placed at the patient's neck on the skin surface of the thyroid cartilage, with an exposure parameter of 120 kVp and 37.07 mAs. The surface entrance dose was noted using the Multi-O-Meter, which was placed at the time of the scan at the level of the thyroid gland on the anterior surface of the neck. Results and Discussion: The surface entrance dose to the thyroid from both jaws scans was 191.491±78.486 µGy for 0.25 mm voxel and 26.9 seconds, and 153.670±74.041 µGy from the mandible scan, whereas from the maxilla scan the surface entrance dose was 5.259±10.691 µGy. Conclusion: The surface entrance doses to the thyroid gland from imaging of both the jaws, and also from imaging of the maxilla and mandible alone were within the threshold limit. The surface entrance dose and effective dose in CBCT were dependent on the exposure parameters (kVp and mAs), scan length, and field of view. To further reduce the radiation dose, care should be taken in selecting an appropriate protocol as well as the provision of providing shielding to the thyroid gland.
Background: Radiodiagnosis is widely performed in medical institutions. All medical professionals, including nurses, are at risk of radiation exposure. This study developed an educational application for radiation medical professionals to visualize the distribution of scattered radiation using augmented reality. Materials and Methods: A Monte Carlo simulation code was used to simulate mobile chest and abdominal radiography. The calculation results were incorporated into an augmented reality application. The results of the Monte Carlo calculations were validated by comparing them with radiation measurements. An augmented reality application for tablet devices was developed in Unity that visualizes the scattered radiation dose. Results and Discussion: The application was developed by visualizing the distribution of scattered radiation in mobile radiography in augmented reality in three-dimensional real space. The calculation results were validated, and the error between the displayed radiation dose values and the measured radiation dose values was generally less than 10%. Conclusion: The developed application allows users to overlay quantitative values of imperceptible radiation exposure doses onto any real-world environment. This enables users to intuitively understand the relationship between the distance from a radiation source and the received dose, thereby contributing to a better understanding of radiation protection in clinical settings.
We tried to study in order to furnish the data for medical exposure dose and scattered ray in radiography. As the tables(from 1 to 3) show, we can presume, by means of a concrete numerical value, the amount of results affected by patient radiation exposure dose and somatic effect in radiography. However, there are many difficulties in the difference of exposure factor in each hospital, the accuracy of measuring by tracebility, shortage of exposure dose data especially in the area of children, and portable radiography, etc. In the radiation examination, it is considered if the gained benefit to the patient due to radiation is more than the risk of radiation, then the medical exposure is thought to be justified. Therefore, the radiotechnologists should continually make an effort to develop and study new techniques so as to reduce patient exposure dose.
목 적: 암치료 기술의 발전으로 환자의 생존기간이 길어짐에 따라 치료 이후 삶의 질을 증진하고 치료 방법에 의한 부작용을 줄이는 노력에 관심이 집중되고 있다. 본 연구는 유방암 접선조사 치료에서 치료방법 차이가 반대쪽 유방 산란 선량에 미치는 영향을 분석하고자 하였다. 대상 및 방법: 본원에서 제작한 유방 모형 팬텀의 전산화 단층 영상을 이용하여 이클립스 10.0 (Eclipse 10.0, Varian, USA) 치료계획 시스템을 사용하여 $30^{\circ}$ wedge plan, $15^{\circ}$ wedge plan, $30^{\circ}$ EDW (Enhanced dynamic wedge) plan, Non-wedge plan, FIF(Field in Field) plan을 수립하였다. 각 치료계획은 선형가속기 CL-6EX (VARIAN, USA)를 이용하여 400 cGy씩 조사하였고 팬텀의 중심점으로부터 횡축방향으로 1 cm, 3 cm, 5 cm, 9 cm 씩 이동한 지점의 1 cm 깊이에서 전리조(FC 65G, IBA)를 이용하여 내측접선(Medial tangential) 조사와 외측접선(Lateral tangential) 조사에서 발생하는 산란선량을 각각 측정하고 비교 분석하였다. 결 과: 반대쪽 유방 산란 선량을 평가해보았을 때 $30^{\circ}$ wedge plan, $15^{\circ}$ wedge plan, $30^{\circ}$ EDW (Enhanced dynamic wedge) plan, Non-wedge plan, FiF (Field in Field) plan에서 처방선량에 대해 각각 6.55%, 4.72%, 2.79%, 2.33%, 1.87%로 나타났다. 내측접선조사와 외측접선 조사로 나누어 보았을 때 내측접선 조사 측정값은 각각 4.94%, 3.33%, 1.55%, 1.17%, 0.77%로 나타났고 외측접선 조사는 각각 1.61%, 1.40%, 1.24%, 1.16%, 1.10%의 산란 선량이 측정되었다. 결 론: 유방암 접선 조사 치료방법 중 반대쪽 유방에 가장 적은 산란 선량이 발생하는 방법은 FiF plan으로 이때 발생한 산란선량은 팬텀 내에서 기인한 선량이 주로 작용하는 것으로 판단되었다. 가장 많은 산란 선량이 발생하는 치료방법은 $30^{\circ}$ wedge plan이었고 쐐기필터를 비롯한 치료 장비에서 기인한 선량은 3.3%로 평가되었다. 치료계획 시스템은 처방선량에 대해 상대적으로 낮은 산란 선량 영역은 정확성이 떨어지는 것으로 나타났다. 치료 조사야 밖으로 발생하는 산란 선량은 처방 선량에 비해 그 양이 적지만 2차 암 발생 확률과 관련이 있다는 점에서 간과할 수 없는 부분이며 방사선 치료를 결정하는데 있어 고려되어야 할 부분으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.