• Title/Summary/Keyword: Scattered Radiation

Search Result 233, Processing Time 0.021 seconds

Patch Antenna Shape Design Using the Genetic Algorithm (유전 알고리즘을 이용한 패치 안테나 형상 설계)

  • Song, Sung Moon;Kim, Cheolwoong;Lee, Heeseung;Yoo, Jeonghoon
    • Transactions of the Society of Information Storage Systems
    • /
    • v.10 no.2
    • /
    • pp.45-49
    • /
    • 2014
  • This study deals with obtaining the optimal shape of a patch antenna via the topology optimization method in order to enhance its radiation efficiency. The genetic algorithm scheme is proposed for the optimization process to satisfy the design objective. As a result, the optimal patch shape through the proposed process shows highly improved radiation efficiency and reduced scattered effects. Commercial package COMSOL and Matlab programming are employed for the entire optimization and analysis processes.

A Design of the Thickness Gauge Using the Compton Gamma-ray Backscattering

  • B.S. Moon;Kim, Y.K.;Kim, J.Y.;Kim, J.T.;C.E. Chung;S.B. Hong
    • Nuclear Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.457-464
    • /
    • 2000
  • In this paper, we describe the results of various calculations performed for a design of the thickness gauges that use the gamma-ray backscattering method. The radiation source is assumed to be the $_{24}$1Am(60keV gamma-ray) and the detector is a single crystal scintillator in a cylindrical form. The source is located at the center of the detector with the collimator of a cylindrical shape. First, when gamma-rays are incident on a material with a constant angle, we compute the variations of the spectrum for the photons scattered into different angular intervals. Next, we compute for an optimal size for the collimator cylinder for a fixed detector size and an optimal distance from the detector to the material. Finally, we compute the number of observed photons for different thickness of two different materials, a plastic film and an Al foil.

  • PDF

Establishment of the Monoenergetic Fluorescent X-ray Radiation Fields (교정용 단일에너지 형광 X-선장의 제작)

  • Kim, Jang-Lyul;Kim, Bong-Hwan;Chang, Si-Young;Lee, Jae-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.1
    • /
    • pp.33-47
    • /
    • 1998
  • Using a combination of an X-ray generator Installed in radiation calibration laboratory of Korea Atomic Energy Research Institute (KAERI) and a series of 8 radiators and filters described in ISO-4037, monoenergetic fluorescent X-rays from 8.6 keV to 75 keV were produced. This fluorescent X-rays generated by primary X-rays from radiator were discriminated $K_{\beta}$ lines with the aid of filter material and the only $K_{\alpha}$ X-rays were analyzed with the high purity Ge detector and portable MCA. The air kerma rates were measured with the 35 co ionization chamber and compared with the calculational results, and the beam uniformity and the scattered effects of radiation fields were also measured. The beam purities were more than 90 % for the energy range of 8.6 keV to 75 keV and the air kerma rates were from 1.91 mGy/h (radiator : Au, filter : W) to 54.2 mGy (radiator : Mo, filter : Zr) at 43 cm from center of the radiator. The effective area of beam at the measurement point of air kerma rates was 12 cm ${\times}$ 12 cm and the influence of scattered radiation was less than 3 %. The fluorescent X-rays established in this study could be used for the determination of energy response of the radiation measurement devices and the personal dosemeters in low photon energy regions.

  • PDF

A Study of Tissue-equivalent Compensator for 10MV X-ray and Co-60 Gamma-ray (고에너지 방사선치료용 조직등가보상체에 관한 고찰)

  • CHOI Tae Jin;HONG Young Rak;LIM Charn Soo;JEUNG Ho Yong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.1 no.1
    • /
    • pp.47-51
    • /
    • 1985
  • Authors describe some useful data when constructing tissue-equivalent compensators which would compensate tissue deficit in the treatment field of high energy electromagnetic radiation Tissue equivalent compensator is made of lucite. The ratio of compensator thickness to the thickness of tissue deficit depends on radiation energy, field size and the distance from the compensator to patient skin. When the compensator is separated from skin surface, the thickness ratio is always smaller than 1.0. This means that the larger the separation, the contribution to the total dose by means of scattered radiation from a tissue equivalent compensator is smaller. Authors propose that the thickness of lucite as tissue equivalent compensator is 0.57 times tissue deficit and the separation between compensator and skin is at least 15m for Co-60 gamma ray and 25cm for 10MV X-ray.

  • PDF

The Variation of UV Radiation by Cloud Scattering at King Sejong Station in West Antarctica (남극 세종기지에서의 구름 산란에 의한 자외선 변화)

  • Lee, Kyu-Tae;Lee, Bang-Yong;Won, Young-In;Kim, Youn-Joung;Lee, Won-Hak;Jee, Joon-Bum
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.133-143
    • /
    • 2004
  • For the purpose of understanding the cloud scattering effect of UV radiation at King Sejong station In West Antarctica, we analyzed the data measured by UV-Biometer at surface and compared its result with solar radiation model. The parameterization of UV radiation by cloud ice crystal was applied to solar radiation model and the sensitivity of this model for the variation of ice crystal was tested. The cloud optical thickness was calculated by using this solar radiation model. It was compared the result from calculation with CERES satellite data. In solar radiation model, the UV radiation was less scattered with increase of ice crystal size in cloud and this scattering effect was more important to UV-A radiation than Erythemal UV-B radiation. But scattering effects by altitude of cloud was not serious. The calculated cloud optical thicknesses in Erythemal UV-B and UV-A region were compared with CERES satellite data and the result by UV-A was more accurate than Erythemal UV-B region.

STRENGTH OF THE RAMAN SCATTERED HE II EMISSION LINES IN SYMBIOTIC STARS AND PLANETARY NEBULAE

  • LEE HEE-WON
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.55-60
    • /
    • 2003
  • In Lee, Kang & Byun (2001) the discovery of Raman scattered 6545 A feature was reported in symbiotic stars and the planetary nebula M2-9. The broad emission feature around 6545 A is formed as a result of Raman scattering of He II n = 6 $\to$ n = 2 photons by atomic hydrogen. In this paper, we introduce a method to compute the equivalent width of He II $\lambda$ 1025 line and present an optical spectrum of the symbiotic star RR Telescopii as an example for a detailed illustration. In this spectrum, we pay attention to the broad H$\alpha$ wings and the Raman scattered He II 6545 feature. The broad Ha wings are also proposed to be formed through Raman scattering of continuum around Ly$\beta$ by Lee (2000), and therefore we propose that the equivalent width of the He II $\lambda$ 1025 emission line is obtained by a simple comparison of the strengths of the 6545 feature and the broad H$\alpha$ wings. We prepare a template H$\alpha$ wing profile from continuum radiation around Ly$\beta$ with the neutral scattering region that is supposed to be responsible for the formation of Raman scattered He II 6545 feature. Isolation of the 6545 feature that is blended with [N II] $\lambda$ 6548 is made by using the fact that [N II] $\lambda$ 6584 is always 3 times stronger than [N II] $\lambda$ 6548. We also fit the 6545 feature by a Gaussian which has a width 6.4 times that of the He II $\lambda$ 6527 line. A direct comparison of these two features for RR Tel yields the equivalent width $EW_{Hel025} = 2.3{\AA}$ of He II $\lambda$ 1025 line. Even though this far UV emission line is not directly observable due to heavy interstellar extinction, nearby He II lines such as He II $\lambda$ 1085 line may be observed using far UV space instruments, which will verify this calculation and hence the origins of various features occurring in spectra around H$\alpha$.

Reduction of Scattered Radiation by Air Gap Technique for High Kilovoltage Chest Roentgenography (흉부(胸部) 고관전압(高管電壓) 촬영(撮影)에 있어 Air Gap Technique를 이용한 산란선(散亂線) 경감(輕減)에 관(關)한 연구(硏究))

  • Huh, Joon;Kim, Chang-Kyun;Kang, Hong-Seok;Youn, Chul-Ho;Lee, Sang-Suk;Lim, Han-Young;Song, Jae-Kwan
    • Journal of radiological science and technology
    • /
    • v.3 no.1
    • /
    • pp.57-66
    • /
    • 1980
  • X-ray grid is the most important means to reduce the scattered ray from patients, but alternative way is air gap technique that is another name of Groedel technique. This technique is mainly used in chest radiography. Authors performed an experimental study on the air gap technique for chest radiography and obtained the results as follows; 1. In using the high voltage air technique, scattered ray could be reduced effectively, while the percentage of scattered ray was slightly increased than conventional grid technique. 2. In film contrast, 30cm air gap technique was inferior to 12:1 grid technique and contrast improvement was increased when the object was thicker and higher voltage was used. 3. The patient exposure dose was reduced about $25{\sim}45%$ compared with conventional grid technique by air gap technique used.

  • PDF

Evaluation of the Usefulness of Images according to the Use of the Field Size in Mastoid Process Radiography (유양돌기 방사선검사 시 조사야 사용법에 따른 영상의 유용성 평가)

  • Jung, Hong-Ryang
    • Journal of radiological science and technology
    • /
    • v.44 no.5
    • /
    • pp.435-441
    • /
    • 2021
  • The purpose of this study was to evaluate the quality of images and to quantitatively measure and analyze the dose of scattered ray to the organs, which were highly sensitive to radiation according to the use of cylinder cone in mastoid process radiography. When the cylinder cone was not used, the SID was 100cm and the field size was 24 × 36 cm(864 cm2). When using the cylinder cone which was a circle, the SID was 70 cm, the radius was 10.5 cm and field size was 86.59 cm2. As a result of the study, SNR of the image quality evaluation was measured to be 2.58 for Law method and 3.90 for Stenver's method when not using cylinder cone, and 2.87 for Law method and 14.67 for Stenver's method when using cylinder cone. CNR was measured to be 0.03 for Law method and 0.04 for Stenver's method when cylinder cone was not used, and 0.04 for Law method and 0.05 for Stenver's method when using cylinder cone. When the cylinder cone was not used, the scattered ray dose was measured to be 0.10 mGy in the right eyeball, 0.30 mGy in the left eyeball, 2.02 mGy in the parotid gland, and 0.29 mGy in the thyroid gland for Law method and to be 0.03 mGy in the right eyeball, 0.12 mGy in the left eyeball, 1.43 mGy in the parotid gland, and 0.09 mGy in the thyroid gland for Stenver's method. When the cylinder cone was used, the scattered ray dose was measured to be 0.05 mGy in the right eyeball, 0.03 mGy in the left eyeball and the parotid and thyroid gland were below the measurable values for Law method and all areas were below the measurable values for Stenver's method. This was found to be statistically significant(p<0.000).

A Study for Effects of Image Quality due to Scatter Ray produced by Increasing of Tube Voltage (관전압 증가에 기인한 산란선 발생의 화질 영향 연구)

  • Park, Ji-Koon;Jun, Je-Hoon;Yang, Sung-Woo;Kim, Kyo-Tae;Choi, Il-Hong;Kang, Sang-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.663-669
    • /
    • 2017
  • In diagnostic medical imaging, it is essential to reduce the scattered radiation for the high medical image quality and low patient dose. Therefore, in this study, the influence of the scattered radiation on medical images was analyzed as the tube voltage increases. For this purpose, ANSI chest phantom was used to measure the scattering ratio, and the scattering effect on the image quality was investigated by RMS evaluation, RSD and NPS analysis. It was found that the scattering ratio with increasing x-ray tube voltage gradually increased to 48.8% at 73 kV tube voltage and to 80.1% at 93 kV tube voltage. As a result of RMS analysis for evaluating the image quality, RMS value according to increase of tube voltage was increased, resulting in low image quality. Also, the NPS value at 2.5 lp/mm spatial frequency was increased by 20% when the tube voltage was increased by 93 kV compared to the tube voltage of 73 kV. From this study, it can be seen that the scattering radiation have a significant effect on the image quality according to the increase of x-ray tube voltage. The results of this study can be used as basic data for the improvement of medical imaging quality.

Evaluation of the Usefulness of Tungsten Nanoparticles as an Alternative to Lead Shielding Materials in Electron Beam Therapy (전자선 치료시 납 차폐체 대체물질로서의 텅스텐 나노입자의 유용성 평가)

  • Kim, Ji-Hyang;Kim, Na-Kyoung;Lee, Gyu-Yeong;Jung, Da-Bin;Heo, Yeong-Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.949-956
    • /
    • 2021
  • The purpose of this paper is to evaluate whether tungsten nanoparticles have a shielding effect on scattered light generated at high doses as an alternative material to lead used to shield scattered light in electron beam therapy. A plate was manufactured to set the position of the dosimeter and the size of the radiation field to be constant. The glass dosimeter was placed at 12 points, which were 1, 2, and 4 cm apart from the center of the field of 10 × 10 cm2 in the cross direction. A total of 12 types of tungsten nanoparticle shields were developed with a thickness of 0.75 mm to 4.00 mm and a size of 10 × 10 cm2 using 0.4, 0.75, and 1 mm materials. Using a linear accelerator, measurements were made four times at 6 MeV and four times at 12 MeV, and the dose intensity was investigated at 100 MU. The 4 mm shielding plate showed the highest shielding effect at 1 cm from the irradiation field. The 1 mm shielding plate at 2 cm from the irradiation field had the lowest shielding effect. As the thickness of the tungsten shielding plate increased, the electron beam's shielding effect increased sharply. It was confirmed that tungsten nanoparticles can reduce the amount of scattered light generated by electron beam therapy. Therefore, this study will provide basic data when follow-up studies are conducted on the shielding ability of tungsten nanoparticles.