• 제목/요약/키워드: Scatter partition

검색결과 12건 처리시간 0.022초

Nonlinear Characteristics of Fuzzy Scatter Partition-Based Fuzzy Inference System

  • Park, Keon-Jun;Huang, Wei;Yu, C.;Kim, Yong K.
    • International journal of advanced smart convergence
    • /
    • 제2권1호
    • /
    • pp.12-17
    • /
    • 2013
  • This paper introduces the fuzzy scatter partition-based fuzzy inference system to construct the model for nonlinear process to analyze nonlinear characteristics. The fuzzy rules of fuzzy inference systems are generated by partitioning the input space in the scatter form using Fuzzy C-Means (FCM) clustering algorithm. The premise parameters of the rules are determined by membership matrix by means of FCM clustering algorithm. The consequence part of the rules is represented in the form of polynomial functions and the parameters of the consequence part are estimated by least square errors. The proposed model is evaluated with the performance using the data widely used in nonlinear process. Finally, this paper shows that the proposed model has the good result for high-dimension nonlinear process.

Hard 분산 분할 기반 추론 시스템을 이용한 비선형 공정 모델링 (Nonlinear Process Modeling Using Hard Partition-based Inference System)

  • 박건준;김용갑
    • 한국정보전자통신기술학회논문지
    • /
    • 제7권4호
    • /
    • pp.151-158
    • /
    • 2014
  • 본 논문에서는 Hard 분산 분할 방법을 이용하는 추론 시스템을 소개하고 비선형 공정을 모델링한다. 이를 위해 입력 공간을 분산 형태로 분할하고 소속 정도가 0 또는 1을 갖는 Hard 분할 방법을 이용한다. 제안한 방법은 C-Means 클러스터링 알고리즘에 의해 구현되며, 초기 중심값에 민감한 단점을 보완하기 위해 LBG 알고리즘을 적용하여 이진 분할에 의한 초기 중심값을 이용한다. Hard 분산 분할된 입력 공간은 규칙 기반의 시스템 모델링에서 규칙을 형성한다. 규칙의 전반부 파라미터는 C-Means 클러스터링 알고리즘에 의한 소속행렬로 결정된다. 규칙의 후반부는 다항식 함수의 형태로 표현되며, 각 규칙의 후반부 파라미터들은 표준 최소자승법에 의해 동정된다. 비선형 공정으로는 널리 이용되는 데이터를 이용하여 비선형 공정을 모델링한 후 특성을 평가한다.

입력 공간 분할에 따른 뉴로-퍼지 시스템과 응용 (Neuro-Fuzzy System and Its Application by Input Space Partition Methods)

  • 곽근창;유정웅
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.433-439
    • /
    • 1998
  • In this paper, we present an approach to the structure identification based on the input space partition methods and to the parameter identification by hybrid learning method in neuro-fuzzy system. The structure identification can automatically estimate the number of membership function and fuzzy rule using grid partition, tree partition, scatter partition from numerical input-output data. And then the parameter identification is carried out by the hybrid learning scheme using back-propagation and least squares estimate. Finally, we sill show its usefulness for neuro-fuzzy modeling to truck backer-upper control.

  • PDF

Type-2 FCM 기반 퍼지 추론 시스템의 설계 및 최적화 (Design of Type-2 FCM-based Fuzzy Inference Systems and Its Optimization)

  • 박건준;김용갑;오성권
    • 전기학회논문지
    • /
    • 제60권11호
    • /
    • pp.2157-2164
    • /
    • 2011
  • In this paper, we introduce a new category of fuzzy inference system based on Type-2 fuzzy c-means clustering algorithm (T2FCM-based FIS). The premise part of the rules of the proposed model is realized with the aid of the scatter partition of input space generated by Type-2 FCM clustering algorithm. The number of the partition of input space is composed of the number of clusters and the individual partitioned spaces describe the fuzzy rules. Due to these characteristics, we can alleviate the problem of the curse of dimensionality. The consequence part of the rule is represented by polynomial functions with interval sets. To determine the structure and estimate the values of the parameters of Type-2 FCM-based FIS we consider the successive tuning method with generation-based evolution by means of real-coded genetic algorithms. The proposed model is evaluated with the use of numerical experimentation.

Design of Hard Partition-based Non-Fuzzy Neural Networks

  • Park, Keon-Jun;Kwon, Jae-Hyun;Kim, Yong-Kab
    • International journal of advanced smart convergence
    • /
    • 제1권2호
    • /
    • pp.30-33
    • /
    • 2012
  • This paper propose a new design of fuzzy neural networks based on hard partition to generate the rules of the networks. For this we use hard c-means (HCM) clustering algorithm. The premise part of the rules of the proposed networks is realized with the aid of the hard partition of input space generated by HCM clustering algorithm. The consequence part of the rule is represented by polynomial functions. And the coefficients of the polynomial functions are learned by BP algorithm. The number of the hard partition of input space equals the number of clusters and the individual partitioned spaces indicate the rules of the networks. Due to these characteristics, we may alleviate the problem of the curse of dimensionality. The proposed networks are evaluated with the use of numerical experimentation.

분산 분할 방식의 퍼지 규칙 생성 및 추론 시스템 (Fuzzy Rules Generation and Inference System of Scatter Partition Method)

  • 박건준;장태수;김성훈;김용갑
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 추계학술대회
    • /
    • pp.35-36
    • /
    • 2012
  • 퍼지 모델링을 하기 위해서는 퍼지 규칙의 생성이 필연적이며, 일반적으로 차원이 증가할수록 규칙의 수가 지수적으로 증가하는 문제를 가지고 있다. 이를 해결하기 위해, 시스템 데이터를 이용하여 입력 공간을 분산 형태로 분할하는 FCM 클러스터링 알고리즘을 기반으로 하여 퍼지 규칙을 생성하고 추론하는 시스템을 소개한다. 퍼지 규칙의 전반부 파라미터는 FCM 클러스터링 알고리즘에 의한 소속행렬로 결정되며 퍼지 규칙의 후반부는 다항식 함수의 형태로 표현된다. 제안된 모델은 수치 데이터를 이용하여 평가한다.

  • PDF

A Network Partition Approach for MFD-Based Urban Transportation Network Model

  • Xu, Haitao;Zhang, Weiguo;zhuo, Zuozhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권11호
    • /
    • pp.4483-4501
    • /
    • 2020
  • Recent findings identified the scatter and shape of MFD (macroscopic fundamental diagram) is heavily influenced by the spatial distribution of link density in a road network. This implies that the concept of MFD can be utilized to divide a heterogeneous road network with different degrees of congestion into multiple homogeneous subnetworks. Considering the actual traffic data is usually incomplete and inaccurate while most traffic partition algorithms rely on the completeness of the data, we proposed a three-step partitioned algorithm called Iso-MB (Isoperimetric algorithm - Merging - Boundary adjustment) permitting of incompletely input data in this paper. The proposed algorithm was implemented and verified in a simulated urban transportation network. The existence of well-defined MFD in each subnetwork was revealed and discussed and the selection of stop parameter in the isoperimetric algorithm was explained and dissected. The effectiveness of the approach to the missing input data was also demonstrated and elaborated.

Fuzzy modeling using transformed input space partitioning

  • You, Je-Young;Lee, Sang-Chul;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.494-498
    • /
    • 1996
  • Three fuzzy input space partitoining methods, which are grid, tree, and scatter method, are mainly used until now. These partition methods represent good performance in the modeling of the linear system and nonlinear system with independent modeling variables. But in the case of the nonlinear system with the coupled modeling variables, there should be many fuzzy rules for acquiring the exact fuzzy model. In this paper, it shows that the fuzzy model is acquired using transformed modeling vector by linear transformation of the modeling vector.

  • PDF

퍼지 클러스터링 기반 퍼지뉴럴네트워크 설계 및 적용 (Design of Fuzzy Neural Networks Based on Fuzzy Clustering and Its Application)

  • 박건준;이동윤
    • 한국산학기술학회논문지
    • /
    • 제14권1호
    • /
    • pp.378-384
    • /
    • 2013
  • 본 논문에서는 FCM 클러스터링 알고리즘을 기반으로 하는 퍼지뉴럴네트워크를 제안한다. 일반적으로, 퍼지규칙을 생성할 때 차원이 증가하면 퍼지 규칙의 수가 기하급수적으로 증가하는 문제를 가지고 있다. 이를 해결하기 위해, 제안된 네트워크의 퍼지 규칙은 FCM 클러스터링 알고리즘을 이용하여 입력 공간을 분산 형태로 분할함으로써 생성한다. 퍼지 규칙의 전반부 파라미터는 FCM 클러스터링 알고리즘에 의한 소속행렬로 결정된다. 퍼지 규칙의 후반부는 다항식 함수의 형태로 표현되며, 퍼지뉴럴네트워크의 학습은 뉴런의 연결을 조절함으로써 실현되고, 오류 역전파 알고리즘에 의해 행해진다. 마지막으로, 제안된 네트워크는 비선형 공정으로의 적용을 통해 성능을 평가한다.

HCM 클러스터링 알고리즘 기반 비퍼지 추론 시스템의 비선형 특성 (Nonlinear Characteristics of Non-Fuzzy Inference Systems Based on HCM Clustering Algorithm)

  • 박건준;이동윤
    • 한국산학기술학회논문지
    • /
    • 제13권11호
    • /
    • pp.5379-5388
    • /
    • 2012
  • 비선형 공정에 대한 퍼지 모델링에서, 퍼지 규칙은 일반적으로 입력 변수 선택, 공간 분할 수 및 소속 함수에 의해 형성된다. 비선형 공정에 대한 퍼지 규칙의 생성은 차원이 증가할수록 규칙의 수가 지수적으로 증가하는 문제를 가지고 있다. 이를 해결하기 위해, 입력 공간의 퍼지 분할에 의한 퍼지 규칙을 생성함으로써 복잡한 비선형 공정을 모델링 할 수 있다. 따라서 본 논문에서는 HCM 클러스터링 알고리즘을 이용하여 입력 공간을 분산 형태로 분할함으로써 비퍼지 추론 시스템의 규칙을 생성한다. 규칙의 전반부 파라미터는 HCM 클러스터링 알고리즘에 의한 소속행렬로 결정된다. 규칙의 후반부는 다항식 함수의 형태로 표현되며, 각 규칙의 후반부 파라미터들은 표준 최소자승법에 의해 동정된다. 마지막으로, 비선형 공정으로는 널리 이용되는 데이터를 이용하여 비선형 특성 및 성능을 평가한다. 본 실험을 통해 고차원의 비선형 시스템은 매우 적은 수의 규칙을 가지고 모델링할 수 있었다.