• Title/Summary/Keyword: Scapular body

Search Result 72, Processing Time 0.02 seconds

The Effect of Exercise Program for Prevention of Falling on Physical Fitness, Posture and Fall Prevention Self-Efficacy for Elderly Women (넘어짐 예방 운동이 여성노인의 체력, 자세, 낙상효능감에 미치는 영향)

  • Son, Nam Jeong;Yi, Kyung Ock;An, Ju Yeun
    • 한국노년학
    • /
    • v.37 no.1
    • /
    • pp.237-250
    • /
    • 2017
  • The purpose of this study is to analyze the effects of exercise program for prevention of falling on physical fitness, posture and fall prevention self-efficacy for elderly women. 30 females above the age of 65 were subjects for this study. Over an twelve week period, 14women in the experimental group performed exercise 2 times a week for 60 minutes per session. 16women in the control group didn't participate in the exercise program. The independent variable was a exercise program for prevention of falling. Dependent variables were physical fitness, posture and fall prevention self-efficacy. Prevention of falling exercise program is consisted of an elastic band using exercise and Korean dance movement exercise. Physical fitness consisted of grip strength, upper and lower body endurance, cardiovascular endurance, flexibility, balance, coordination. The posture was measured the static posture when standing, using a high-resolution camera, body style to automatically measure the distance and angle(M-zen, Korea). Posture was measured in both the coronal and sagittal plane via reference board. Fall prevention self-efficacy was measured via questionnaire using the Korea Falls Self-Efficacy Scale (FES-K). The physical fitness, posture and fall prevention self-efficacy were measured twice with pre and post exercise, and the difference between groups with Wilcox signed rank test, and the group-specific post verification was carried out with U-validated methods (Mann Whitney U test). Statistical significance level was verified by setting the p<.05. Lower body endurance, cardiovascular endurance, flexibility, balance and coordination significantly increased in the experimental group. The control group was no significant increase in physical fitness variables. shoulder slope angle, pelvic slope angle(coronal/sagittal), leg length difference, scapular inferior angle and left/right calcaneus angle significantly decreased in the experimental group. Both the experimental group and control group were no significant increase in fall prevention self efficacy. The prevention of falling exercise program for elderly women indicated the positive changes in physical fitness(except grip strength) and posture(except upper body slope). However, there are no significant differences of falling prevention self-efficacy between the both group. Thus, the prevention of falling exercise program for the elderly has been proved that it is highly efficient on improving physical fitness and posture proofreading. However, we still need to consider supplement exercise for grip strength and upper body slope.

A STUDY ON THE TEMPERATURE CHANGES OF BONE TISSUES DURING IMPLANT SITE PREPARATION (임플랜트 식립부위 형성시 골조직의 온도변화에 관한 연구)

  • Kim Pyung-Il;Kim Yung-Soo;Jang Kyung-Soo;Kim Chang-Whe
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.1
    • /
    • pp.1-17
    • /
    • 2002
  • The purpose of this study is to examine the possibility of thermal injury to bone tissues during an implant site preparation under the same condition as a typical clinical practice of $Br{\aa}nemark$ implant system. All the burs for $Br{\aa}nemark$ implant system were studied except the round bur The experiments involved 880 drilling cases : 50 cases for each of the 5 steps of NP, 5 steps of RP, and 7 steps of WP, all including srew tap, and 30 cases of 2mm twist drill. For precision drilling, a precision handpiece restraining system was developed (Eungyong Machinery Co., Korea). The system kept the drill parallel to the drilling path and allowed horizontal adjustment of the drill with as little as $1{\mu}m$ increment. The thermocouple insertion hole. that is 0.9mm in diameter and 8mm in depth, was prepared 0.2mm away from the tapping bur the last drilling step. The temperatures due to countersink, pilot drill, and other drills were measured at the surface of the bone, at the depths of 4mm and 8mm respectively. Countersink drilling temperature was measured by attaching the tip of a thermocouple at the rim of the countersink. To assure temperature measurement at the desired depths, 'bent-thermocouples' with their tips of 4 and 8mm bent at $120^{\circ}$ were used. The profiles of temperature variation were recorded continuously at one second interval using a thermometer with memory function (Fluke Co. U.S.A.) and 0.7mm thermocouples (Omega Co., U.S.A.). To simulate typical clinical conditions, 35mm square samples of bovine scapular bone were utilized. The samples were approximately 20mm thick with the cortical thickness on the drilling side ranging from 1 to 2mm. A sample was placed in a container of saline solution so that its lower half is submerged into the solution and the upper half exposed to the room air, which averaged $24.9^{\circ}C$. The temperature of the saline solution was maintained at $36.5^{\circ}C$ using an electric heater (J. O Tech Co., Korea). This experimental condition was similar to that of a patient s opened mouth. The study revealed that a 2mm twist drill required greatest attention. As a guide drill, a twist drill is required to bore through a 'virgin bone,' rather than merely enlarging an already drilled hole as is the case with other drills. This typically generates greater amount of heat. Furthermore, one tends to apply a greater pressure to overcome drilling difficulty, thus producing even greater amount heat. 150 experiments were conducted for 2mm twist drill. For 140 cases, drill pressure of 750g was sufficient, and 10 cases required additional 500 or 100g of drilling pressure. In case of the former. 3 of the 140 cases produced the temperature greater than $47^{\circ}C$, the threshold temperature of degeneration of bone tissue (1983. Eriksson et al.) which is also the reference temperature in this study. In each of the 10 cases requiring extra pressure, the temperature exceeded the reference temperature. More significantly, a surge of heat was observed in each of these cases This observations led to addtional 20 drilling experiments on dense bones. For 10 of these cases, the pressure of 1,250g was applied. For the other 10, 1.750g were applied. In each of these cases, it was also observed that the temperature rose abruptly far above the thresh old temperature of $47^{\circ}C$, sometimes even to 70 or $80^{\circ}C$. It was also observed that the increased drilling pressure influenced the shortening of drilling time more than the rise of drilling temperature. This suggests the desirability of clinically reconsidering application of extra pressures to prevent possible injury to bone tissues. An analysis of these two extra pressure groups of 1,250g and 1,750g revealed that the t-statistics for reduced amount of drilling time due to extra pressure and increased peak temperature due to the same were 10.80 and 2.08 respectively suggesting that drilling time was more influenced than temperature. All the subsequent drillings after the drilling with a 2mm twist drill did not produce excessive heat, i.e. the heat generation is at the same or below the body temperature level. Some of screw tap, pilot, and countersink showed negative correlation coefficients between the generated heat and the drilling time. indicating the more the drilling time, the lower the temperature. The study also revealed that the drilling time was increased as a function of frequency of the use of the drill. Under the drilling pressure of 750g, it was revealed that the drilling time for an old twist drill that has already drilled 40 times was 4.5 times longer than a new drill The measurement was taken for the first 10 drillings of a new drill and 10 drillings of an old drill that has already been used for 40 drillings. 'Test Statistics' of small samples t-test was 3.49, confirming that the used twist drills require longer drilling time than new ones. On the other hand, it was revealed that there was no significant difference in drilling temperature between the new drill and the old twist drill. Finally, the following conclusions were reached from this study : 1 Used drilling bur causes almost no change in drilling temperature but increase in drilling time through 50 drillings under the manufacturer-recommended cooling conditions and the drilling pressure of 750g. 2. The heat that is generated through drilling mattered only in the case of 2mm twist drills, the first drill to be used in bone drilling process for all the other drills there is no significant problem. 3. If the drilling pressure is increased when a 2mm twist drill reaches a dense bone, the temperature rises abruptly even under the manufacturer-recommended cooling conditions. 4. Drilling heat was the highest at the final moment of the drilling process.