• Title/Summary/Keyword: Scanning stage

Search Result 445, Processing Time 0.035 seconds

The Analysis of Motion Error in Scanning Type XY Stage (스캐닝 방식 XY 스테이지의 운동오차 분석)

  • 황주호;박천홍;이찬홍;김동익;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1380-1383
    • /
    • 2004
  • The scanning type XY stage is frequently used these days as precision positioning system in equipment for semiconductor or display element. It is requested higher velocity and more precise accuracy for higher productivity and measuring performance. The position accuracy of general stage is primarily affected by the geometric errors caused by parasitic motion of stage, misalignments such as perpendicular error, and thermal expansion of structure. In the case of scanning type stage, H type frame is usually used as base stage which is driven by two actuators such as linear motor. In the point view of scanning process, the stage is used in moving motion. Therefore, dynamic variation is added as significant position error source with other parasitic motion error. Because the scanning axis is driven by two actuators with two position detectors, 2 dimensional position errors have different characteristic compared to general tacked type XY stage. In this study 2D position error of scanning stage is analyzed by 1D heterodyne interferometer calibrator, which can measure 1D linear position error, straightness error, yaw error and pitch error, and perpendicular error. The 2D position error is evaluated by diagonal measurement (ISO230-6). The yaw error and perpendicular error are compensated on the base stage of scanning axis. And, the horizontal straightness error is compensated by cross axis compensation. And, dynamic motion error in scanning motion is analyzed.

  • PDF

Ultra high precision Dual stage system Using Air bearing and VCM for Nano level Scanning (VCM을 이용한 나노 정밀도 스캐닝 용 초정밀 이중 스테이지)

  • Kim Ki-Hyun;Gweon Dae-Gab;Choi Young-Man;Kim Dong-Min;Nam Byoung-Uk;Lee Suk-Won;Lee Moon-Gu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.103-112
    • /
    • 2005
  • This paper presents one-axis high precision scanning system and illustrates the design of modified $X-Y-{\theta}$ stage as a tracker using VCM and commercialized air bearings for it. The scanning system for 100nm resolution is composed of the 3-axis stage and one axis long stroke linear motor stage as a follower. In this study a previous proposed and presented structure of VCM for the fine stage is modified. The tracker has 3 DOF($X-Y-{\theta}$ motions by four VCM actuators which are located on the same plane. So 4 actuating forces are suggested and designed to create least pitch and roll motions. This article will show about the design especially about optimal design. The design focus of this fine stage is to have high acceleration to accomplish high throughput. The optimal design of maximizing acceleration is performed in restrained size. The most sensitive constraint of this optimal design is heat dissipation of coil. There are 5 design variables. Because the relationship between design variables and system parameters are quite complicated, it is very difficult to set design variables manually. Due to it, computer based optimal design procedure using MATLAB is used. Then, this paper also describes the procedures of selecting design variables for the optimal design and a mathematical formulation of the optimization problem. Based on the solution of the optimization problem, the final design of the stage is also presented. The results can be verified by MAXWELL. The designed stage has the acceleration of about 5 $m/s^{2}$ with 40kg total mass including wafer chuck and interferometer mirror. And the temperature of coil is increased $50^{\circ}C$. In addition, the tracker is controlled by high precision controller system with HP interferometer for it and linear scaler for the follower. At that time, the scanning system has high precision resolution about 5nm and scanning resolution about 40nm in 25mm/s constant speed

Automation of laser scanning and registration of measured data using a 3-axis motorized stage (3축 전동테이블을 이용한 레이저 스캐너의 측정 및 레지스트레이션 자동화)

  • Son, Seok-Bae;Kim, Seung-Man;Lee, Kwan-Heng
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.134-139
    • /
    • 2001
  • Laser scanners are widely used for reverse engineering and inspection of freeform parts in industry such as motors, electronic products, dies and molds. Due to the lack of measuring software and positioning device, the laser scanning processes have been erroneous and inconsistent. In order to automate measuring processes, an automated scan plan generation software and a proprietary hardware are developed. In this paper, an automated laser scanning system using a 3-axis motorized stage is proposed. In the scan planning step, scan directions, paths, and the number of scans are generated considering optical and mechanical parameters. In the scanning step, the generated scan plan is downloaded into the laser scanner and the motorized stage and the points on the surface are captured automatically. Finally, the point data set is analyzed to evaluate the performance of the system.

  • PDF

Laser Scanning Technology for Ultrasonic Horn Location Compensation to Modify Nano-size Grain (나노계면 형성을 위한 초음파 진동자 위치보정을 위한 레이저 스캐닝 기술)

  • Kim, Kyugnhan;Lee, Jaehoon;Kim, Hyunse;Park, Jongkweon;Yoon, Kwangho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1121-1126
    • /
    • 2014
  • To compensate location error of ultrasonic horn, the laser scanning system based on the galvanometer scanner is developed. It consists of the 3-Axis linear stage and the 2-Axis galvanometer scanner. To measure surface shape of three-dimensional free form surface, the dynamic focusing unit is adopted, which can maintain consistent focal plane. With combining the linear stage and the galvanometer scanner, the scanning area is enlarged. The scanning CAD system is developed by stage motion teaching and NURBS method. The laser scanning system is tested by marking experiment with the semi-cylindrical sample. Scanning accuracy is investigated by measured laser marked line width with various scanning speed.

Optimal design of a flexure hinge-based XY AFM scanner for minimizing Abbe errors and the evaluation of measuring uncertainty of AFM system (원자현미경용 XY 스캐너의 아베 오차 최소화를 위한 최적 설계 및 원자 현미경의 측정 불확도 평가)

  • Kim D.M.;Lee D.Y.;Gweon D.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1438-1441
    • /
    • 2005
  • To establish of standard technique of nano-length measurement in 2D plane, new AFM system has been designed. In this system, measurement uncertainty is dominantly affected by the Abbe error of XY scanning stage. No linear stage is perfectly straight; in other words, every scanning stage is subject to tilting, pitch and yaw motion. In this paper, an AFM system with minimum offset of XY sensing is designed. And XY scanning stage is designed to minimize rotation angle because Abbe errors occur through the multiply of offset and rotation angle. To minimize the rotation angle optimal design has performed by maximizing the stiffness ratio of motion direction to the parasitic motion direction of each stage. This paper describes the design scheme of full AFM system, especially about XY stage. Full range of fabricated XY scanner is $100um\times{100um}$. And tilting, pitch and yaw motion are measured by autocollimator to evaluate the performance of XY stage. Using this AFM system, 3um pitch specimen was measured. As a result, the uncertainty of total system has been evaluated.

  • PDF

Design and Control of Ultra-precision Dual Stage with Air bearings and Voice coil motor for nm scanning system (나노 정밀도 스캐닝 용 공기베어링과 보이스 코일 모터의 초정밀 이중 스테이지 설계 및 제어)

  • Kim K.H.;Choi Y.M.;Kim J.J.;Lee M.G.;Lee S.W.;Gweon D.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1883-1886
    • /
    • 2005
  • In this paper, a decoupled dual servo (DDS) stage for ultra-precision scanning system with large working range is introduced. In general, dual servo systems consist of a fine stage for short range and a coarse stage for long range. The proposed DDS also consists of a $XY\theta$ fine stage for handling and carrying workpieces and one axis coarse stage. Its coarse stage consists of air bearing guide system and a coreless linear motor with force ripple. The fine has four voice coil motors(VCM) as its actuator. According to a VCM's nature, there are no mechanical connections between coils and magnetic circuits. Moreover, VCM doesn't have force ripples due to imperfections of commutation components of linear motor systems - currents and flux densities. However, due to the VCM's mechanical constraints the working range of the fine is about $25mm^2$. To break that hurdle, the coarse stage with linear motors is used to move the fine about 500mm. Because of the above reasons, the proposed DDS can achieve higher precision scanning than other stages with only one servo. With MATLAB's Sequential Quadratic Programming (SQP), the VCMs are optimally designed for the highest force under conditions and constraints such as thermal dissipations due to its coil, its size, and so on. And for their movements without any frictions, guide systems of the DDS are composed of air bearings. To get precisely their positions, a linear scale with 5nm resolution are used for the coarse stage's motion and three plane mirror laser interferometers with 5nm for the fine's $XY\theta$ motions. With them, on scanning the two stages have same trajectories. The control algorithm is named Parallel method. The embodied ultra-precision scanning system has sub 100nm following error and in-positioning stability.

  • PDF

Optimal design of a flexure hinge-based XY AFM scanner for minimizing Abbe errors and the evaluation of pitch measuring uncertainty of a nano-accuracy AFM system (XY 스캐너의 아베 오차 최소화를 위한 최적 설계 및 나노 정밀도의 원자 현미경 피치 측정 불확도 평가)

  • Kim Dong-Min;Lee Dong-Yeon;Gweon Dae-Gab
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.96-103
    • /
    • 2006
  • To establish of standard technique of nano-length measurement in 2D plane, new AFM system has been designed. In the long range (about several tens of ${\mu}m$), measurement uncertainty is dominantly affected by the Abbe error of XY scanning stage. No linear stage is perfectly straight; in other words, every scanning stage is subject to tilting, pitch and yaw motion. In this paper, an AFM system with minimum offset of XY sensing is designed. And XY scanning stage is designed to minimize rotation angle because Abbe errors occur through the multiply of offset and rotation angle. To minimize the rotation angle optimal design has performed by maximizing the stiffness ratio of motion direction to the parasitic motion direction of each stage. This paper describes the design scheme of full AFM system, especially about XY stage. Full range of fabricated XY scanner is $100{\mu}m\times100{\mu}m$. And tilting, pitch and yaw motion are measured by autocollimator to evaluate the performance of XY stage. As a result, XY scanner can have good performance. Using this AFM system, 3um pitch specimen was measured. The uncertainty of total system has been evaluated. X and Y direction performance is different. X-direction measuring performance is better. So to evaluate only ID pitch length, X-direction scanning is preferable. Its expanded uncertainty(k=2) is $\sqrt{(3.96)^2+(4.10\times10^{-5}{\times}p)^2}$ measured length in nm.

Specimen Preparation for Scanning Electron Microscope Using a Converted Sample Stage

  • Kim, Hyelan;Kim, Hyo-Sik;Yu, Seungmin;Bae, Tae-Sung
    • Applied Microscopy
    • /
    • v.45 no.4
    • /
    • pp.214-217
    • /
    • 2015
  • This study introduces metal coating as an effective sample preparation method to remove charge-up caused by the shadow effect during field emission scanning electron microscope (FE-SEM) analysis of dynamic structured samples. During a FE-SEM analysis, charge-up occurs when the primary electrons (input electrons) that scan the specimens are not equal to the output electrons (secondary electrons, backscattered electrons, auger electrons, etc.) generated from the specimens. To remove charge-up, a metal layer of Pt, Au or Pd is applied on the surface of the sample. However, in some cases, charge-up still occurs due to the shadow effect. This study developed a coating method that effectively removes charge-up. By creating a converted sample stage capable of simultaneous tilt and rotation, the shadow effect was successfully removed, and image data without charge-up were obtained.

Development for Scanning Type Stage Driven by Linear Motors (리니어모터를 이용한 고속 저중심 스테이지의 개발과 정밀도 향상)

  • 송창규;김정식;김경호;박천홍
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.445-448
    • /
    • 2004
  • Linear motor is very rapidly substituted for rotary motor and ball screw for precision positioning applications because of its characteristics such as high speed, no backlash and simplicities. A precision positioning system which is composed of linear motion(LM) guide and linear motor is widely used since it has easy controllable property but this system has low accuracy problem caused by friction of the LM guide. In this study, a scanning type XY stage is manufactured and some experiments is performed to improve the accuracy of the stage.

  • PDF