• Title/Summary/Keyword: Scanning speed

Search Result 675, Processing Time 0.029 seconds

Evaluations of Microstructure and Hydrogenation Properties on $Mg_2NiH_x$ ($Mg_2NiH_x$ 수소저장합금의 미세결정구조 및 수소화 특성평가)

  • Seok, Song;Shin, Kyung;Kweon, Soon-Yong;Ur, Soon-Chul;Lee, Young-Geun;Hong, Tae-Whan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.3
    • /
    • pp.238-243
    • /
    • 2005
  • Mg and Mg-based alloys are most important hydrogen storage materials. It is a lightweight and low-cost materials with high hydrogen storage capacity. However, the formation of hydride at high temperature, the deterioration effect, the hydriding and dehydriding kinetics are bad factor for application. In this study, Mg and Ni have been produced by hydrogen induced mechanical alloying(HIMA) process. The raw materials, Mg(purity 99.9%) chip and Ni(purity 99.95%) chip was prepared by using a planetary ball mill apparatus(FRITSCH pulverisette 5). The balls to chips mass ratio(BCR) are 30:1. The hydrogen pressure induced 2.0MPa and milling times were 12, 24, 48, 72, 96 hours with a rotating speed of 200rpm. X-ray diffraction(XRD) analysis was made to characterize the crystallite size and misfit strain. The crystallite size measured by laser particle size analysis(PSA). Microstructure changes were investigated by scanning electron microscopy(SEM) and the transmission electron microscopy(TEM). The hydrogen storage properties were evaluated by using an Sivert's type automatic pressure-composition-therm(PCT) apparatus.

STL Generation in Reverse Engineering by Delaunay Triangulation (역공학에서의 Delaunay 삼각형 분할에 의한 STL 파일 생성)

  • Lee, Seok-Hui;Kim, Ho-Chan;Heo, Seong-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.803-812
    • /
    • 2002
  • Reverse engineering has been widely used for the shape reconstruction of an object without CAD data and the measurement of clay or wood models for the development of new products. To generate a surface from measured points by a laser scanner, typical steps include the scanning of a clay or wood model and the generation of manufacturing data like STL file. A laser scanner has a great potential to get geometrical data of a model for its fast measuring speed and higher precision. The data from a laser scanner are composed of many line stripes of points. A new approach to remove point data with Delaunay triangulation is introduced to deal with problems during reverse engineering process. The selection of group of triangles to be triangulated based on the angle between triangles is used for robust and reliable implementation of Delaunay triangulation as preliminary steps. Developed software enables the user to specify the criteria for the selection of group of triangles either by the angle between triangles or the percentage of triangles reduced. The time and error for handling point data during modelling process can be reduced and thus RP models with accuracy will be helpful to automated process.

Construction of Multi-Dimensional Ortho-Images with a Digital Camera and the Multi-Image Connection Method (디지털카메라와 다중영상접합법을 이용한 다차원 정사영상의 구축)

  • Kim, Dong Moon
    • Journal of Digital Convergence
    • /
    • v.12 no.8
    • /
    • pp.295-302
    • /
    • 2014
  • Essential to the establishment of such 3D spatial information are the laser scanning technology to obtain high-precision 3D point group data and the photography-metric camera to obtain high-resolution multispectral image information. The photography-metric camera, however, lacks in usability for its broad scope of utilization due to the high purchase price, difficult purchase channel, and low applicability. This study thus set out to investigate a technique to establish multi-dimensional ortho-image data with a single lens reflex digital camera of high speed and easy accessibility for general users. That is, the study remodeled a single lens reflex digital camera and calibrated the remodeled camera to establish 3D multispectral image information, which is the essential data of 3D spatial information. Multi-dimensional ortho-image data were collected by surveying the reference points for stereo photos, taking multispectral shots of the objects, and converting them into ortho-images.

Impedance Calculation of Power Distribution Networks for High-Speed DRAM Module Design (고속DRAM모듈 설계에 대한 전원평면의 임피던스계산)

  • Lee, Dong-Ju;Younggap You
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.3
    • /
    • pp.49-60
    • /
    • 2002
  • A systematic design approach for Power distribution network (PDN) is presented aiming at applications to DRAM module designs. Three main stages are comprised in this design approach: modeling and simulation of a PDN based on a two-dimensional transmission line structure employing a partial element equivalent circuit (PEEC); verification of the simulation results through comparison to measured values; and design space scanning with PDN parameters. Impedance characteristics for do-coupling capacitors are analyzed to devise an effective way to stabilize power and ground plane Performance within a target level of disturbances. Self-impedance and transfer-impedance are studied in terms of distance between circuit features and the size of do-coupling capacitors. A simple equation has been derived to find the do-coupling capacitance values yielding impedance lower than design target, and thereby reducing the overall computation time. The effectiveness of the design methodology has been demonstrated using a DRAM module with discrete do-coupling capacitors and a strip structure.

Implementation for Automatic Inspection System on Ventilating Electronic Device Based on Reliability Improvement (신뢰성 향상 기반의 송풍전자장치 자동검사 시스템 구현)

  • Do, Nam Soo;Ryu, Kwang Ryol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1155-1160
    • /
    • 2017
  • This paper describes a system implementation for the automatic inspection on the ventilating electronic device based on the reliability improvement. To be enhancement, the inspection error is minimized by the automatic inspection system on the ventilating apparatuses against the manual inspecting system. The system consists of the control system, software structure and monitoring system to be scanning the inspection processing. The inspection system for reliability improvement is evaluated in Gage Repeatability and Reproducibility. The experimental results are improved about 2 times inspecting speed, measured error ${\pm}0.02V$, effectiveness of discriminating performance 15%, missing probability 17% and false alarm probability 12% respectively in comparing with the manual inspection based on the wind pressure sensor. The system will be also improved more by making database and product bar codes for the total quality control system to the effective reliability enhancement in the future.

An Experimental Study on Sink Mark Formation in Compression Molded SMC Parts with Rib (리브를 가진 일체형 SMC 압축성형재의 Sink Mark 형성에 관한 실험적 연구)

  • 정진호;임용택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1490-1500
    • /
    • 1995
  • Compression molding of SMC (Sheet Molding Compound) in a thin plaque with substructures like a rib is involved with the formation of surface defect along the centerline over the rib area called by sink mark depending on process parameters. The surface quality of the external panels in automotive manufacturing is so critical that this kind of defect should be eliminated during manufacturing stages. The effect of process parameters on sink mark formation and the distribution of chopped fiberglasses in the compression molded thin plaque with a rib was experimentally investigated in the present study. In order to estimate the effect of the molding parameters such as molding temperature, mold closing speed, depth of the rib, corner radius of the rib, and final molded part thickness of flat portion on the depth of sink mark and the distribution of fiberglasses in the molded SMC part with the rib under the present experimental conditions, the molding parameters used in experiments were non-dimensionalized equation for predicting the depth of sink mark was determined through dimensional analysis based on the experimental data. The orientation and distribution of fiberglasses and fillers which directly affect the formation and depth of sink mark were investigated by taking the photographs of the cross-sectional area of the molded specimen using scanning electron microscope. The experimental results proposed from this investigation are useful in understanding the formation of sink mark and predicting the depth of sink mark in compression molding of SMC with substructures.

Development of Scanner Test and Vectorizing Programs for Digitization of Cadastral Maps (지적도면 전산화를 위한 스캐너 검사 및 벡터화 프로그램 개발)

  • Jeong, Dong-Heon;Jeong, Jae-Jun;Shin, Sang-Hee;Kim, Byung-Guk;Kim, Young-Il
    • Journal of Korea Spatial Information System Society
    • /
    • v.1 no.2 s.2
    • /
    • pp.115-125
    • /
    • 1999
  • Much efforts are being process at many ways for digitization cadastral maps that will be the base map of Parceled Based Land Information Systems. But, current digitizing systems need too much time and cost digitizing about 720,000 cadastral maps. That's way we develop new digitization system for cadastral maps by using scanning and vectorizing methods. In this paper, we treat scanner test and vectorizing program that are the most important parts of new digitization system for cadastral maps. we analyze needs of Korean Cadastral Survey Corporation, and discuss algorithms and functions of developed programs. Using newly developed scanner test program, user could test various scanners, and use inexpensive scanner if it satisfy the accuracy needed. And vectorizing program will reduce much time and cost, because it is designed and customized practically to he adequate to cadastral maps and to improve work speed, accuracy and usage.

  • PDF

A STUDY ON THE BOND STRENGTH OF RESIN CEMENTS TO EMPRESS 2 CERAMIC (Empress 2 도재와 레진시멘트의 결합강도에 관한 연구)

  • Kim Jeong-Suk;Hwang Hee-Seong;Jeong Chang-Mo;Jeon Young-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.2
    • /
    • pp.184-196
    • /
    • 2001
  • The objective of this study was to investigate the influence of resin cements and ceramic etching on shear bond strength of Empress 2 ceramic and observe the change of microstructure of ceramic according to etching time. Sixty-six square ceramic specimens($6{\times}6{\times}1.5mm$) were prepared. 6 specimens were etched with different etching times(0, 10, 20, 30, 40 and 60 seconds) and observed by means of a scanning electron microscope(SEM). Other sixty specimens were divided into 6 groups with 10 specimens in each group. 3 groups were etched with 4% hydrofluoric acid and each groups was bonded with 3 resin cements(Variolink II, Super-Bond C&B, Panavia F). Each specimen was subjected to a shear load in an Instron at a cross-head speed of 0.5mm/min and was observed with SEM after mechanical testing to establish modes of failure. The results were as follows : 1. Within etched groups, Variolink II and Super-Bond C&B exhibited significantly greater bonding strengths than Panavia F(p<0.05) 2. Bond strength of etching groups had three to five times greater than that of no-etching groups. 3. All of no-etching groups showed adhesive failure and etching groups mostly showed mixed failure. And, 20-second etching specimen showed the most distinct lithium disilicate crystal. so it is considered that 20-second etching is optimal time for bonding.

  • PDF

The Study for the characteristics of mechanically and thermally treated PET films (기계적 및 열적 처리된 PET 필름의 특성에 관한 연구)

  • 이종영;노지영;박성수
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.5
    • /
    • pp.197-202
    • /
    • 2001
  • The influence of thermal treatment and cold drawing was investigated for poly(ethy1ene terephthalate) films fabricated with various experimental conditions. Samples were elongated at room temperature under stepwise-drawing condition with the cross-head speed kom 0.5 to 500 mrdmin in an universal tester. Stress oscillation was observed in the stress-stnin curve of the samples heat-treatd at 50, 72 and $129^{\circ}C$ for 30 min, but it was not observed in the samples heat-treatd at $83^{\circ}C$ for 30 min. Thermal analyses of the samples were carried out in differential scanning calorimeter at the heating rate df $10^{\circ}C$/min/min, and the glass transition temperature, crystallization peak, enthalpy of fusion and degree of crystallinity were measured. The dynamic mechanical analyses of the samples were also carried out in a multiplefimction internal kiction pendulum at 1 Hz with the heating rate of $1.5^{\circ}C$/min, and it was found that the elastic modulus increases in the order of non-treated, heat-treated, and elongated samples.

  • PDF

Preparation and Characterization of Lignin/Chlorinated Polyvinyl Chloride Blended Fibers for Low-cost Carbon Fiber (저가 탄소섬유용 Lignin/Chlorinated Polyvinyl Chloride 블렌딩 섬유의 제조 및 특성)

  • Jo, Chaehyun;Lee, Sangoh;Kang, Dakyung;Hong, Seonghwa;Kang, Chankyu;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.32 no.2
    • /
    • pp.111-120
    • /
    • 2020
  • In this study, lignin/chlorinated poly(vinyl chloride)(CPVC) blended fibers have been produced for the development of low-cost carbon fiber. Carbon fiber manufacturing was accomplished through stabilization and carbonization process. The lignin/CPVC blended fibers were prepared by wet spinning method. Dimethylacetamid e(DMAc) and cychlohexanone in a ratio of 5:1(wt%) was employed as co-solvent. The ratio of lignin/CPVC was prepared at 0/10, 1/9, 2/8, 3/7, 4/6, and 5/5(wt%). The spinning solution was extruded at a rate of 0.1 to 0.4ml/min according to the blending ratio. The speed of the rollers was the same for all ratios(draw ratio=1). Analysis of fiber cross-section by scanning eletron microscopy(SEM) showed that as the lignin ratio increased in the same coagulation bath and distilled water, the pore size of the spinning fiber decreased. Therefore, the highest tensile strength of the blending fibers was 6.3±1.2MPa at the 5/5 ratio. The carbon fiber also showed the best tensile strength of 120.78±2.43MPa at 5/5 ratio.