• Title/Summary/Keyword: Scanning range

Search Result 1,210, Processing Time 0.031 seconds

The Influence of the Annealing of Corn Starch on the formation and Characteristics of Enzyme-resistant Starch

  • Yoon, Ji-Young;Lee, Young-Eun
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.4
    • /
    • pp.215-220
    • /
    • 1999
  • The Physical properties of corn starch were investigated by scanning electron microscopy, X-ray diffractometry and differential scanning calorimetry during the formation of enzyme-resistant starch(RS). Samples were studied in their native states and after annealing at 50, 55, 60 and 65℃ in excess water(starch : water=1:3) for 48hr. Starch granules became smaller and more rounded after annealing than in their native state. Annealing did not change the X-ray profile of native corn starch. After autoclaving-cooling cycles, native starch lost most of its crystallinity but annealed ones showed some of their crystallinity left as diffuse or poor B-type, which didn't relate to increasing Rs yields. During formation of RS, however, both native and annealed starches changed their X-ray profile from A-type to poor B-type of retrograded amylose. Annealing caused an increase in gelatinization temperature and enthalpy, but a narrowing of gelatinization temperature range. Only starch annealed at 65℃, however, showed a decrease in enthalpy even though its gelatinization temperature increased, which appeared to be due to the partial gelatinization in the amorphous region during annealing. Peak height index(PHI), the ratio of ΔH to Ti-To, increased by annealing. PHI values, therefore, showed the possibility as an indicator to predict RS yield which cannot be differentiated by differential scanning calorimetry and X-ray diffraction data.

  • PDF

Glass Transition Temperature of Honey Using Modulated Differential Scanning Calorimetry (MDSC): Effect of Moisture Content

  • Kim, Mi-Jung;Yoo, Byoung-Seung
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.4
    • /
    • pp.356-359
    • /
    • 2010
  • Glass transition phenomena in nine Korean pure honeys (moisture content 18.3~20.1%) and honey-water mixtures by different water contents (0, 2, 5, and 10% w/w) were investigated with modulated different scanning calorimetry (MDSC). The total, reversing, and non-reversing heat flows were quantified during heating using MDSC. Glass transition was observed from reversing heat flow separated from the total heat flow. The glass transition temperatures ($T_g$) of pure honeys, which are in the range of $-42.7^{\circ}C$ to $-50.0^{\circ}C$, varied a lot with low determination coefficient ($R^2$=0.63), whereas those of honey-water mixtures decreased with a decrease in honey content. The $T_g$ values were also more significantly different among honey-water mixtures when compared to pure honeys, indicating that in the honey-water mixture system the $T_g$ values appear to be greatly dependent on moisture content. The measured heat capacity change (${\Delta}C_p$) was not influenced by moisture content.

The improvement of exactitude of stereotactic surgery based on personal computer (개인용 컴퓨터를 이용한 뇌정위 수술의 정확도의 개선)

  • Kim, J.S.;Park, H.S.;Choi, K.H.;Chae, E.B.;Lee, Y.H.;Kim, S.I.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.275-278
    • /
    • 1996
  • Accuracy and reproducibility of coordinates, angles/areas and volume measurements are the mai goal of imaging-guided stereotactic systems. Errors in measurements are due to pitfalls in a present systems. Factors responsible for inaccuracy and variability on measurements are inappropriate display window settings, unequal spatial resolution, display/film distortion, inappropriate slice width, lack of isocentricity between gantry and frame, and nonparallelism between frame and scanning plan. The most important factor responsible for errors when using stereotactic frames is the nonparallel relationship to the plane of scanning. For the solution of above problem, author developed a computer program for the measurement of the coordinates of intracerebral target, which is operated using the personal computer. This program can calculate the actual spatial coordinates regardless of the inappropriate parallelism between frame and scanning plane and decrease the range of errors of measurements.

  • PDF

A Flexure Guided Planar Scanner for Scanning Probe Microscope ; Part 2. Evaluation of Static and Dynamic Properties (주사 현미경용 평면 스캐너 Part 2 : 정 · 동 특성 평가)

  • Lee, Moo-Yeon;Gweon, Dae-Gab;Lee, Dong-Yeon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.11 s.104
    • /
    • pp.1295-1302
    • /
    • 2005
  • This paper shows experimental evaluation results of the nano-positioning planar scanner used in the scanning probe microscope. The planar scanner is composed of flexure guides, piezoelectric actuators and feedback sensors as like explained in detail in Ref. (5). First, the fabrication methods were explained. Second, as the static Properties of the Planar scanner. we evaluated the maximum travel range & crosstalk. Also, we presented the correcting method for crosstalk using electric circuits finally. as the dynamic properties of the planar scanner, we evaluated the first resonant frequency. Also, we presented the actual AFM(atomic force microscope) imaging results with up to 2Hz imaging scan rate. Experimental results show that properties of the proposed planar scanner are well enough to be used in SPM applications like AFM.

Beam-scanning Imaging Needle for Endoscopic Optical Coherence Tomography

  • Yang, Woohyeok;Hwang, Junyoung;Moon, Sucbei
    • Current Optics and Photonics
    • /
    • v.5 no.5
    • /
    • pp.532-537
    • /
    • 2021
  • We present a compact endoscopic probe in a needle form which has a fast beam-scanning capability for optical coherence tomography (OCT). In our study, a beam-scanning OCT imaging needle was fabricated with a 26G syringe needle (0.46 mm in outer diameter) and a thin OCT imaging probe based on the stepwise transitional core (STC) fiber. The imaging probe could freely rotate inside the needle for beam scans. Hence, OCT imaging could be performed without rotation or translation of the needle body. In our design, the structural integrity of the needle's steel tubing was preserved for mechanical robustness. Probing the optical signal was performed through the needle's own window formed at the end. For hand-held operation of our imaging needle, a light and compact scanner module (130 g and 45 × 53 × 60 mm3) was devised. Connected to the imaging needle, it could provide rotational actuation driven by a galvanometer. Because of its finite actuation range, our scanner module did not need a fiber rotary joint which might add undesirable complexity. The beam scan speed was 20 Hz and supported 20 frames per second at the maximum for endoscopic OCT imaging.

position marking technique for data measured in a scanning hall probe system (스캐닝 홀 프로브 측정 시스템의 데이터 측정 위치 표시 기술)

  • Yoo, Jae-Un;Lee, Jae-Young;Jung, Ye-Hyun;Lee, Sang-Moo;Youm, Do-Jun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.13-15
    • /
    • 2007
  • We employed home-made position marking module in the scanning Hall probe system. The module is composed of two coils of which gap, a, between wires in a coil is $500{\mu}m$. We appiled 10-35mA of current with 15Hz in the coils and recorded ac corresponding magnetic field signal with respect to measuring time while we measured DC field profiles produced due to superconducting film in a perpendicular magnetic field. We calibrate the position, x, of coils using the measuring time and location of the coils in the holder. The error range was about ${\pm}0.1mm$. We test the module as we applied current of 100A and filed of 1kG in the superconducting tape. It was confirmed that there was no interference between superconducting tape and marking coils.

A Comprehensive Analysis of 3D Body Scanning vs. Manual Measurements in a Large-Scale Anthropometric Survey -Insights from the 8th Size Korea Project- (대규모 인체치수조사 사업에서 3차원 측정치와 직접측정치의 차이 분석 -제8차 사이즈코리아 사업을 중심으로-)

  • Sunmi Park
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.48 no.2
    • /
    • pp.233-253
    • /
    • 2024
  • This study analyzed differences between three-dimensional (3D) body scanning and manual measurements, aiming to assess whether 3D scanning can replace traditional anthropometric tools, such as tape measures and calipers. Data from 4,478 participants in the 8th Size Korea Project were analyzed, covering 43 measurement items. Since Given that the 3D and manual measurements were performed on the same subjects in the 8th Size Korea Project, it was possible to determine the correlation more accurately between the two measurement methods more accurately. Using Applying ISO 20685-1(2018) standards, 15 out of the 43 items fell within allowable error limits. When classified into six types, "small circumferences" and "segment lengths" showed averages of 3.35 mm and 3.10 mm, respectively, within acceptable range. "Body heights" and "body depths" slightly exceeded the limit, with averages of 5.28 mm and 6.58 mm. "Body widths" and "large circumferences" surpassed the limit, with means of 16.77 mm and 16.18 mm. The study offers an objective basis to for validate validating 3D measurements' measurements' reliability and accuracy, addressing various industries' needs for information on the human body's dimensions information.

A Study on the optimization of overlap scanning method for the enhancement of display quality in LC Displays (액정 표시기의 화질 향상을 위한 중첩구동방식의 최적화에 관한 연구)

  • 최선정;김용득
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.10
    • /
    • pp.1280-1285
    • /
    • 1995
  • In this paper the optimized overlap driving scheme for improving the reduction problem of the operating voltage range occured by the overlap driving scheme proposed precedently and increasing the contrast ratio of screen image in the simple matrix LCDs is proposed. The characteristic estimation of the proposed method was performed in a condition that the number of scan electrodes was 120 and the threshold voltage of LC pixel was 2V and the overlap rate of scan signal was varied from 0% to 40% . As a result of estimation compared with the overlap driving scheme proposed precedently, this new method was certified as a method which it could increase the operating voltage range of the LC pixel by 16% in 20% overlap condition and it's operating voltage range was also increased very much with the increase of the overlap rate. Consequently this newly proposed method was certified as a method which it could maintain the improvement effect of the operating characteristics obtained by the overlap driving scheme proposed precedently with the big improvement in the contrast ratio of screen image.

  • PDF

Minimization of Shadow Zone for Hull Mounted Sonar (선체 고정형 소나의 음영 구역 최소화)

  • Lim, Se-Han;Han, Yun-Hoo;Jang, Chan-Joo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.211-217
    • /
    • 2010
  • This paper introduces the Hull Mounted Sonar Vertical Scanning(HMS Verscan) technique to overcome the limitation of target detection in short range shadow zone. Numerical experiments were done with the HMS Verscan taking advantage of the vertical beamforming technique for two-dimension hydrospace(range-depth). For numerical experiments, ray model and high-frequency monostatic reverberation model were used. HMS Verscan increased a sound pressure level at the short range shadow zone through reflections at the sea surface and seafloor. Inclusion of the boundary scattering improved target detection due to the sound reflected into the shadow zone.

Pyrolysis Characteristic and Ignition Energy of High-Density Polyethylene Powder (고밀도 폴리에틸렌 분진의 열분해성과 착화에너지)

  • Han, Ou-Sup;Lee, Jung-Suk
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.3
    • /
    • pp.31-37
    • /
    • 2014
  • The aim of this work is to provide new experimental data on the pyrolysis characteristics and the minimum ignition energy (MIE) by using the same high-density polyethylene (HDPE) powder in domestic HDPE dust explosion accident. To evaluate the explosion sensitivity of HDPE, thermo-gravimetric analysis (TGA), differential scanning calorimeter (DSC) and MIE apparatus (MIKE-3, K$\ddot{u}$hner) was conducted. The measurements showed the volume median diameter of $61.6{\mu}m$ but the particle number density of 98 % in the range $0.4{\sim}4{\mu}m$. The ignition temperature from the results of TGA and DSC in HDPE dust layers was observed in the range of $380{\sim}490^{\circ}C$. MIE was measured under 1 mJ in the HDPE dust concentration of $1200{\sim}1800g/m^3$, it was found that the ratio of particle number density in the range $0.4{\sim}4{\mu}m$ was very high (98%).