• Title/Summary/Keyword: Scanning height

Search Result 246, Processing Time 0.029 seconds

The Observation of Fatigue Striations for Aluminum Alloy by Atomic Force Microscope(AFM) (원자력 현미경(AFM)에 의한 알루미늄 합금의 피로 스트라이에이션 관찰)

  • Choe, Seong-Jong;Gwon, Jae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.955-962
    • /
    • 2000
  • Scanning Probe Microscope (SPM) such as Scanning Tunneling Microscope (STM) and Atomic Force Microscope (AFM) was shown to be the powerful tool for nano-scale characterization of a fracture surface . AFM was used to study cross sectional profiles and dimensions of fatigue striations in 2017-T351 aluminum alloy. Their widths (SW) and heights (SH) were measured from the cross sectional profiles of three-dimension AFM images. The following results that will be helpful to understand the fatigue crack growth mechanism were obtained. (1) Coincidence of the crack growth rate with the striation width was found down to the growth rate of 10-5 mm/cycle. (2) The relation of SH=0.085(SW)1.2 was obtained. (3) The ratio of the striation height to its width SH/SW did not depend on the stress intensity factor range K and the stress ratio R. (4) Not only the SW but also the SH changed linearly with the crack tip opening displacement (CTOD) when plotted in log-log scale. From these results, the applicability of the AFM to nano-fractography is discussed.

Fabrication of the photon scanning tunneling microscope with constant intensity mode (일정광량 방식의 광자주사현미경 제작)

  • Kim, Ji-Taek;Choi, Wan-Hae;Jo, Jae-Heung;Chang, Soo;Kim, Dal-Hyun;Koo, Ja-Yong;Chung, Seung-Tae
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.3
    • /
    • pp.195-200
    • /
    • 1999
  • We made sharp optical fiber tips with less than 100 nm diameter by using the heating and pulling method with a good repetition and fabricated the photon scanning tunneling microscope (PSTM) using constant intensity mode. The 3-dimensional PZT (Piezoelctric transducer) scanner made of a long PZT tube is consisted of three divided parts, that is, a pair of $\pm$ x and a pair of $\pm$y scanning parts and a z scanning part for the fine approach and scanning. The scanning dimension is 1.43 $\mu\textrm{m}$$\times$1.76 $\mu\textrm{m}$. The height of a optical tip to maintain a constant height within $1/{\lambda}_0$ (${\lambda}_0$ is the incident wavelength) from surface of a specimen to a optical tip is controlled automatically by using the electric feedback circuit. The 3-dimensional shape of standing evanescent waves generated on the surface of a dove prism was measured successfully by using the constant intensity mode PSTM.

  • PDF

Design of radiation detection circuit for gamma column scanning (자동 감마 증류탑 검사 장치를 위한 방사선 계측장치 설계)

  • Kim, Jong-Beom;Jeong, Seong-Hui
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.612-615
    • /
    • 2003
  • In this paper, a design of radiation detector for gamma column scanner is introduced. Distillation column is important unit in Petro-chemical industries, and its on-line diagnose is very important. To get density profile measured by the radiation transmitted through column is well method for on-line diagnose as gamma scanning. For this purpose radiation detection circuit, radiation source and mechanical system for moving source and detector are required. Conventional radiation detection circuit for this application is sensitive to electric noise because of interface between the radiation circuit and the controller for mechanical system. The radiation detection system introduced here is using loop coil instead of slip ring to remove contact noise. Radiation detection system designed here for gamma scanning consist of BGO detector, high voltage circuit, PHA circuit and FSK modem. The BGO detector is used as radiation sensor, high voltage circuit and peak height analysis circuit is essential to process the signal generated from BGO detector. Micro controller convert measured data into ASCII data. FSK modem transmit ASCII data. Transmitted ASCH data is picked up in antenna coil and processed for combined function with mechanical system. This method gives good result by isolating the controlling circuit of mechanical system from radiation detecting circuit which is sensitive to noise.

  • PDF

Verification of the Accuracy of Photogrammetry in 3D Full-Body Scanning -A Case Study for Apparel Applications-

  • Eun Joo Ryu;Lu Zhang;Hwa Kyung Song
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.1
    • /
    • pp.137-151
    • /
    • 2023
  • Stationary 3D whole-body scanners generally require 5 to 20 seconds of scanning time and cannot effectively detect armpit and crotch areas. Therefore, this study aimed to analyze the accuracy of a photogrammetric technique using a multi-camera system. First, dimensional accuracy was analyzed using a mannequin scan, comparing the differences between the scan-derived measurements and the direct measurements, with an allowable tolerance of ISO 20685-1:2018. Only 2 of 59 measurement items (ankle height and upper arm circumference, specifically) exceeded the ISO 20685-1:2018 criteria. When compared with the results of the eight stationary whole-body scanners assessed by the literature, the photogrammetric technique was found to have the advantage of scanning the top of the head, armpit, and crotch areas clearly. Second, this study found the photogrammetric technique is suitable for obtaining the body scans because it can minimize the perform scanning, resulting in a reduction of measurement errors due to breathing and uncontrolled movements. The error rate of the photogrammetry method was much lower than that of stationary 3D whole-body scanners.

Fabrication of Three-Dimensional Curved Microstructures by Two-Photon Polymerization Employing Multi-Exposure Voxel Matrix Scanning Method (다중조사 복셀 매트릭스 스캐닝법을 이용한 이광자 중합에 의한 마이크로 3차원 곡면형상 제작)

  • Lim, Tae-Woo;Park, Sang-Hu;Yang, Dong-Yol;Kong, Hong-Jin;Lee, Kwang-Sup
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.418-421
    • /
    • 2005
  • Three-dimensional (3D) microfabrication process using two-photon polymerization (TPP) is developed to fabricate the curved microstructures in a layer, which can be applied potentially to optical MEMS, nano/micro-devices, etc. A 3D curved structure can be expressed using the same height-contours that are defined by symbolic colors which consist of 14 colors. Then, the designed bitmap figure is transformed into a multi-exposure voxel matrix (MVM). In this work a multi-exposure voxel matrix scanning method is used to generate various heights of voxels according to each laser exposure time that is assigned to the symbolic colors. An objective lens with a numerical aperture of 1.25 is employed to enlarge the variation of a voxel height in the range of 1.2 to 6.4 um which can be controlled easily using the various exposure time. Though this work some 3D curved micro-shapes are fabricated directly to demonstrate the usefulness of the process without a laminating process that is generally required in a micro-stereolithography process.

System Development and Field Application for Measuring installation Interval and Height of Road safety Facilities Using a tine Scanning Camera (라인스캔 카메라를 이용한 도로 안전시설 설치간격 및 높이측정 시스템 개발 및 현장적용)

  • Moon, Hyung-Chul;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.231-237
    • /
    • 2008
  • One of the basic requirements for the most advanced countries would be the well-planned traffic infrastructures. For such traffic safety systems, foreign countries follow the current tendency to which they manage the traffic facilities and equipments based on the objective assessment for the state of every traffic safety facility in terms of Asset Management(AM). As the road safety facilities related among them are very diverse, and their functions are very important as well, the regulations and directions for installing them are enacted. However, despite the standards and directions for the installations, sometimes, the facilities are not installed in accordance with the standards, not only causing inconvenience to the users but also negatively affecting the safety for them. In the study, for the facilities in which the installation interval and height are standardized according to the designed speed and geometrical structure of the road among the various road safety facilities, the image analysis model capable of measuring them with a line scanning camera was developed. In addition, the program systematically analyzing this was also developed and applied to the field and, as the result of that, the size and installation interval of the facilities could be measured fast and accurately.

  • PDF

A STUDY ON THE DIMENSIONAL ACCURACY OF MODELS USING 3-DIMENSIONAL COMPUTER TOMOGRAPHY AND 2 RAPID PROTOTYPING METHODS

  • Cho Lee-Ra;Park Chan-Jin;Park In-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.6
    • /
    • pp.633-640
    • /
    • 2001
  • Statement of problem. Relatively low success rate of root analogue implant system was supposed to be due to the time duration between extraction and implant installation. The use of three-dimensional computer tomography and the reconstruction of objects using rapid prototyping methods would be helpful to shorten this time. Purpose. This aim of this study was to evaluate the application possibility of the 3-dimensional computer tomography and the rapid prototyping to root analogue implants. Material and methods. Ten single rooted teeth were prepared. Width and height of the teeth were measured by the marking points. This was followed by CT scanning, data conversion and rapid prototyping model fabrication. 2 methods were used; fused deposition modelling and stereolithography. Same width and height of this models were measured and compared to the original tooth. Results. Fused deposition modelling showed an enlarged width and reduced height. The stereolithography showed more exact data compared with the fused deposition modelling. Smaller standard deviation were recorded in the stereolithographic method. Overall width error from tooth to rapid prototyping was 7.15% in fused deposition modelling and 0.2% in stereolithography. Overall height showed the tendency of reducing dimensions. Conclusion. From the results of this study, stereolithography seems to be very predictable method of fabricating root analogue implant.

  • PDF

Development of Ftheta Lens for Laser Scanning Unit (Laser Scanning Unit용 FΘ 렌즈 개발)

  • Jeong, In-Sook;Ban, Min-Sung;Son, Kwang-Eun;Lee, Byoung-Bag
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.13-19
    • /
    • 2013
  • Ftheta Lens, whose image height is proportional to its field view angle, is one of the most important parts in Laser Scanning Unit(LSU). In this paper $f{\theta}$ lens design, mold production and modification method of lens design and mold are introduced. Lens design was carried out with Zemax and Special Toric surfaces were applied for lens surfaces to minimize distortion both in main and sub scanning directions. And a high precision machine with 1nm resolution was used to fabricate lens mold cores. After injection the lens was evaluated and the difference from design was examined. This difference was compensated by modifying lens design and new lens mold cores were made according to modified lens design to obtain the quality of original design.

Investigation of Domestic and Foreign Forest Resource Management Status and Analysis of Laser Scanning Technology Application (국내외 산림자원관리 현황 조사 및 레이저 스캐닝 기술의 산림적용 방안 분석)

  • Park, Joon-Kyu;Lee, Keun-Wang
    • Journal of Digital Convergence
    • /
    • v.19 no.11
    • /
    • pp.391-396
    • /
    • 2021
  • In this study, items for forest policy and forest resource research in Austria, Japan, New Zealand, and Indonesia, which are major forest advanced countries, were investigated, and the applicability of point cloud data acquired through laser scanning was identified. Through the study, it was found that forest policies in developed countries are being pursued for the purpose of sustainable forest conservation and management, job creation, and timber productivity improvement, and that new technologies are being researched and applied to actual projects. Korea has a high proportion of forests compared to the national land area compared to major forestry developed countries, but the accumulation of trees is relatively low, so it is a time for scientific forest management to improve the accumulation of trees. To understand the applicability of laser scanning technology, a forest resource survey using point cloud data was conducted, and the diameter of breast height, height, number of trees per unit area were calculated, and the shape of the crown was identified. If field experiments and accuracy evaluations applying various laser scanning technologies are carried out in the future, it will be possible to present the quantitative improvement of forest resource survey using foil cloud.

Rockwell Hardness Modeling Using Volumetric Variable (체적변수를 이용한 로크웰 경도 모델링)

  • Chin, Do-Hun;Oh, Sang-Rok;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.394-401
    • /
    • 2013
  • A new Rockwell hardness (HRC) model using a volumetric parameter by a least square and fractal interpolation method is suggested. The results are also investigated in comparison to real measured hardness data. For this purpose, the measurement of an indented volume is performed using a confocal laser scanning microscope (CLSM), and the captured height encoded image (HEI) is used as an original surface for the calculation of the indented volume. After configuring the surface, the constructed volume is calculated and used as an independent variable for HRC hardness modeling. The hardness model is established using an experimental modeling technique involving a least square algorithm and fractal interpolating model, and this suggested model can be used to reliably predict the Rockwell hardness. These techniques can also be applied to the modeling of the Brinnell and Vickers hardnesses using a volumetric variable.