• Title/Summary/Keyword: Scanning Path

Search Result 154, Processing Time 0.072 seconds

A Study on the Electrochemical Performance of Fe-V Chloric/Sulfuric Mixed Acid Redox Flow Battery Depending on Electrode Activation Temperature (Fe-V Chloric/Sulfuric Mixed Acid 레독스흐름전지 전극의 활성화 온도에 따른 전기화학적 성능 고찰)

  • Lee, Han Eol;Kim, Dae Eop;Kim, Cheol Joong;Kim, Taekeun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.639-645
    • /
    • 2020
  • Among the components of redox flow battery (RFB), the electrode serves as a diffusion layer of an electrolyte and a path for electrons and also is a major component that directly affects the RFB performance. In this paper, chloric/sulfuric mixed acidwas used as a supporting electrolyte in RFB system with Fe2+/Fe3+ and V2+/V3+ as redox couple. The optimum electrode and activation temperature were suggested by comparing the capacity, coulombic efficiency and energy efficiency according to the electrode type and activation temperature. In the RFB single cell evaluation using 5 types of carbon electrodes used in the experiments, all of them showed close to the theoretical capacity to retain the reliability of the evaluation results. GFD4EA showed relatively excellent energy efficiency and charge/discharge capacity. In order to investigate the electrochemical performance according to the activation temperature, GFD4EA electrode was activated by heat treatment at different temperatures of 400, 450, 500, 600 and 700 ℃ under an air atmosphere. Changes in physical properties before and after the activation were observed using electrode mass retention, scanning electron microscope (SEM), XPS analysis, and electrochemical performance was compared by conducting RFB single evaluation using electrodes activated at each temperature given above.

Potential Exposure of Nanoparticles from Laboratory to Office (실험실에서 사무실로의 나노입자의 잠재적 노출)

  • Shin, Hyeokjin;Kim, Younghun
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.123-130
    • /
    • 2022
  • Nanoparticles are used in various fields such as chemistry, medicine, the environment, and information and communication. With the increasing use of engineered nanomaterials, exposure to nanoparticles is expected to increase in the workplace and the environmental media. However, while nanotechnology industries are expanding, research on the exposure assessment of nanomaterials to humans and the environment is only at a beginning stage. Especially, if nanoparticles with a size of 100 nm or less that are contained in nano-products are released unintentionally, they may pose potential risks to the human body through breathing or skin exposure. Therefore, in this work, the possibility of potential exposure of nanoparticles moving from the laboratory to the office was confirmed, and nanoparticle safety guidelines are proposed. A nano-collector was used to detect nanoparticles in the atmosphere, and through use of a scanning mobility particle sizer it was found that nanoparticle concentrations in the laboratory and the office tended to be similar. On the assumption that nanoparticles attached to a lab-coat move out of the laboratory, a lab-coat to which nanocarbon black was attached was shaken and the concentration of the remaining particles on the lab-coat determined. The results confirmed that sufficient amounts of nanoparticles attached to the lab-coat could move from the laboratory to the office along the path of a researcher; thus, safety guidelines for the handling of lab-coat nanoparticles are required.

A study on optical coherence tomography system using optical fiber (광섬유를 이용한 광영상 단층촬영기에 관한연구)

  • 양승국;박양하;장원석;오상기;김현덕;김기문
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.5-9
    • /
    • 2004
  • In this paper, we studied the OCT(Optical Coherence Tomography) system which it has been extensively studied because of having some advantages such as high resolution cross-sectional images, low cost, and small size configuration. A basic principle of OCT system is Michelson interferometer. The characteristics of light source determine the resolution and the transmission depth. As a results, the light source have a commercial SLD with a central wavelength of 1,285 nm and FWHM(Full Width at Half Maximum) of 35.3 nm. The optical delay line part is necessary to equal of the optical path length with scattered light or reflected light from sample. In order to equal the optical path length, the stage which is attached to reference mirror is moved linearly by step motor And the interferometer is configured with the Michelson interferometer using single mod fiber, the scanner can be focused of the sample by using the reference arm. Also, the 2-dimensional cross-sectional images were measured with scanning the transverse direction of the sample by using step motor. After detecting the internal signal of lateral direction at a paint of sample, scanner is moved to obtain the cross-sectional image of 2-demensional by using step motor. Photodiode has been used which has high detection sensitivity, excellent noise characteristic, and dynamic range from 800 nm to 1,700 nm. It is detected mixed small signal between noise and interference signal with high frequency After filtering and amplifying this signal, only envelope curve of interference signal is detected. And then, cross-sectional image is shown through converting this signal into digitalized signal using A/D converter. The resolution of the OCT system is about 30$\mu\textrm{m}$ which corresponds to the theoretical resolution. Also, the cross-sectional image of ping-pong ball is measured. The OCT system is configured with Michelson interferometer which has a low contrast because of reducing the power of feedback interference light. Such a problem is overcomed by using the improved inteferometer. Also, in order to obtain the cross-sectional image within a short time, it is necessary to reduce the measurement time for improving the optical delay line.

  • PDF

A Study on the Development of a Home Mess-Cleanup Robot Using an RFID Tag-Floor (RFID 환경을 이용한 홈 메스클린업 로봇 개발에 관한 연구)

  • Kim, Seung-Woo;Kim, Sang-Dae;Kim, Byung-Ho;Kim, Hong-Rae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.508-516
    • /
    • 2010
  • An autonomous and automatic home mess-cleanup robot is newly developed in this paper. Thus far, vacuum-cleaners have lightened the burden of household chores but the operational labor that vacuum-cleaners entail has been very severe. Recently, a cleaning robot was commercialized to solve but it also was not successful because it still had the problem of mess-cleanup, which pertained to the clean-up of large trash and the arrangement of newspapers, clothes, etc. Hence, we develop a new home mess-cleanup robot (McBot) to completely overcome this problem. The robot needs the capability for agile navigation and a novel manipulation system for mess-cleanup. The autonomous navigational system has to be controlled for the full scanning of the living room and for the precise tracking of the desired path. It must be also be able to recognize the absolute position and orientation of itself and to distinguish the messed object that is to be cleaned up from obstacles that should merely be avoided. The manipulator, which is not needed in a vacuum-cleaning robot, has the functions of distinguishing the large trash that is to be cleaned from the messed objects that are to be arranged. It needs to use its discretion with regard to the form of the messed objects and to properly carry these objects to the destination. In particular, in this paper, we describe our approach for achieving accurate localization using RFID for home mess-cleanup robots. Finally, the effectiveness of the developed McBot is confirmed through live tests of the mess-cleanup task.