• Title/Summary/Keyword: Scanning Mobility Particle Sizer

Search Result 67, Processing Time 0.018 seconds

Observation of Secondary Organic Aerosol and New Particle Formation at a Remote Site in Baengnyeong Island, Korea

  • Choi, Jinsoo;Choi, Yongjoo;Ahn, Junyoung;Park, Jinsoo;Oh, Jun;Lee, Gangwoong;Park, Taehyun;Park, Gyutae;Owen, Jeffrey S.;Lee, Taehyoung
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.300-312
    • /
    • 2017
  • To improve the understanding of secondary organic aerosol (SOA) formation from the photo-oxidation of anthropogenic and biogenic precursors at the regional background station on Baengnyeong Island, Korea, gas phase and aerosol chemistries were investigated using the Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-ToF-MS) and the Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS), respectively. HR-ToF-AMS measured fine particles ($PM_1$; diameter of particle matter less than $1{\mu}m$) at a 6-minute time resolution from February to November 2012, while PTR-ToF-MS was deployed during an intensive period from September 21 to 29, 2012. The one-minute time-resolution and high mass resolution (up to $4000m{\Delta}m^{-1}$) data from the PTR-ToF-MS provided the basis for calculations of the concentrations of anthropogenic and biogenic volatile organic compounds (BVOCs) including oxygenated VOCs (OVOCs). The dominant BVOCs from the site are isoprene (0.23 ppb), dimethyl sulphide (DMS, 0.20 ppb), and monoterpenes (0.38 ppb). Toluene (0.45 ppb) and benzene (0.32 ppb) accounted for the majority of anthropogenic VOCs (AVOCs). OVOCs including acetone (3.98 ppb), acetaldehyde (2.67 ppb), acetic acid (1.68 ppb), and formic acid (2.24 ppb) were measured. The OVOCs comprise approximately 75% of total measured VOCs, suggesting the occurrence of strong oxidation processes and/or long-range transported at the site. A strong photochemical aging and oxidation of the atmospheric pollutants were also observed in aerosol measured by HR-ToF-AMS, whereby a high $f_{44}:f_{43}$ value is shown for organic aerosols (OAs); however, relatively low $f_{44}:f_{43}$ values were observed when high concentrations of BVOCs and AVOCs were available, providing evidence of the formation of SOA from VOC precursors at the site. Overall, the results of this study revealed several different SOA formation mechanisms, and new particle formation and particle growth events were identified using the powerful tools scanning mobility particle sizer (SMPS), PTR-ToF-MS, and HR-ToF-AMS.

Physico-chemical Characteristics of Submicron Aerosol at West Inflow Regions in the Korean Peninsula III. Physical-Chemical Behavior and Long-range Transport of PM1 (한반도 서부유입권역에서 대기 중 에어로졸 성분의 물리·화학적 특성 연구 III. 화학적 거동 및 장거리 이동)

  • Park, Taehyun;Ahn, Junyoung;Choi, Jinsoo;Lim, Yongjae;Park, Jinsoo;Kim, Jeongho;Oh, Jun;Lee, Yonghwan;Hong, Youdeog;Hong, Jihyung;Choi, Yongjoo;Lee, Taehyoung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.2
    • /
    • pp.124-138
    • /
    • 2017
  • Physico-chemical measurement of non-refractory submicron particles($NR-PM_1$) was conducted in Baengnyeong Island, Korea using Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) from 2012 to 2014. Organics and ammoniated sulfate were dominant species in $NR-PM_1$. The organics was found to have similar fractions(approximate 40%) of $NR-PM_1$ during the summer and winter, while the sulfate fractions of $NR-PM_1$ were calculated to be approximately 47% and 31% for the summer and winter, respectively, suggesting the possibility that particles provide non-acidic surfaces for condensation of nitric acid in the winter. The nitrate fractions of approximate 4% and 20% of $NR-PM_1$ were observed in August (summer) and November (winter), respectively, resulting that the relatively low concentration of sulfate in $NR-PM_1$ provided a non-acidic surface for nitric acid condensation and formation of particulate ammoniated nitrate is favored thermodynamically in winter. The new particle formation (NPF) event and particle growth rate were analyzed for each month in 2014 using Scanning Mobility Particle Sizer(SMPS). The Percent of NPF events was the highest in winter, but NPF event was not observed during summer due to relatively high temperature and frequent rainfall. The average particle growth rate was 3.5 nm/h and the highest particle growth rate was 5.5 nm/h in May. We observed the long-range transport of the anthropogenic sulfate from the East Asia during the intensive monitoring period of November between Qingdao and Baengnyeong Island in 2013. The relatively high concentrations of m/z 60 measured in HR-ToF-AMS was observed in May and June at Baengnyeong Island, suggesting the possibility of the influence of biomass burning from the East Asia to the Korean Peninsula.

Exposure Characteristics of Particles during the After-treatment Processes of Aluminum Oxide Fibers and Nickel Powders (산화알루미늄 섬유와 니켈분말 후처리공정에서 입자의 노출특성)

  • Kim, Jong Bum;Kim, Kyung Hwan;Ryu, Sung Hee;Yun, Seong-Taek;Bae, Gwi-Nam
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.2
    • /
    • pp.225-236
    • /
    • 2016
  • Objectives: Nanomaterials have been used in various fields. As use of nanoproducts is increasing, workers dealing with nanomaterials are also gradually increasing. Exposure assessments for nanomaterials have been carried out for protection of worker's health in workplace. Exposure studies were mainly focused on manufacturing processes, but these studies on after-treatment processes such as refinement, weighing, and packing were insufficient. So, we investigated exposure characteristics of particles during after-treatment processes of $Al_2O_3$ fibers and Ni powders. Methods: Mass-production of Ni powder process was carried out in enclosed capture-type canopy hood. In a developing stage, $Al_2O_3$ was handled with a local ventilation unit. Exposure characteristics of particles were investigated for $Al_2O_3$ fiber and Ni powder processes during the periods of 10:00 to 16:00, 20 May 2014 and 13:00 to 16:00, 21 May 2014, respectively. Three real-time aerosol instruments were utilized in exposure assessment. A scanning mobility particle sizer(SMPS, nanoscan, model 3910, TSI) and an optical particle counter(OPC, portable aerosol spectrometer, model 1.109, Grimm) were used to determine the particle size distribution in the size range of 10-420 nm and $0.25-32{\mu}m$, respectively. In addition, a nanoparticle aerosol monitor(NAM, model 9000, TSI) was used to measure lung-deposited nanoparticle surface area. Membrane filters(isopore membrane filter, pore size of 100 nm) were also used for air sampling for the FE-SEM(model S-5000H, Hitachi) analysis using a personal sampling pump(model GilAir Plus by 2.5 L/min, Gilian). Conclusions: For Ni powder after-treatment process, only 27% increase in particle concentration was found during the process. However, for $Al_2O_3$ fiber after-treatment process, significant exposure(1.56-3.34 times) was observed during the process.

Comparison of Antibacterial Ability of Air Filter Media Treated with a Natural Antibacterial Agent by Three Treatment Methods (항균성 천연물질의 도포방법에 따른 에어필터 여재의 항균 특성 비교)

  • Park, Sun Young;Jung, Jae Hee;Hwang, Gi Byung;Bae, Gwi-Nam;Kim, Yong Pyo;Nho, Chu Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.2
    • /
    • pp.125-134
    • /
    • 2013
  • Various antimicrobial technologies have been developed to inactivate bioaerosols in indoor environments. In this study, air filter media were treated with a natural antibacterial agent of Sophora flavescens in order to inactivate the bacteria collected on the air filter. Three treatment methods were applied to manufacture the test antibacterial air filter media: electrospray, nebulization and dip-coating methods. In case of electrospray and nebulization processes, the size distribution of aerosolized natural antibacterial agent was measured using a scanning mobility particle sizer. Staphylococcus epidermidis bacteria were aerosolized to test inactivation of the filter media treated with a natural antibacterial agent. The pressure drop and the antibacterial efficiency of the filter media increased with increasing the mass loading of natural antibacterial agent in each treatment method. The antibacterial efficiency per loaded antibacterial agent mass by the electrospray method was the highest and the filter treated by the dip-coating method was the lowest among three treatment methods.

Evaluation of Fine-Particle Removal Performance of Novel ESP with Highly Durable Chargers and Collectors (고내구성 하전 및 집진 방식 전기집진기의 미세입자 제거 특성)

  • Kim, Hak-Joon;Han, Bang-Woo;Hong, Won-Seok;Shin, Wan-Ho;Song, Dong-Keun;Jung, Sang-Hyeon;Kim, Yong-Jin;Oh, Won-Suk;Hwang, Kyu-Dong;Yoo, Seong-Yeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.423-428
    • /
    • 2010
  • Electrostatic precipitators (ESPs) used currently in industries for removing fine particles from semiconductors have to be made of expensive anticorrosive metallic materials in order to maintain their particle-removal performance. To satisfy the economical demands of industries, a novel ESP was developed; in this ESP, the charger is made of carbon fibers and collection plates consist of PET films among which an aluminum sheet is inserted. The ESP was evaluated by changing the voltages applied to the chargers and collection plates, flow rates, and number of charging channels. KCl particles with mean diameters of 100 nm were used, and a scanning mobility particle sizer was used to measure the changes in particle number concentrations upstream and downstream of the ESP. The experimental results showed that more than 90% of the particles were removed by using the ESP containing ionizers with nine channels and 65-mm collection plates at $500\;m^3/hr$ when voltages of 7 kV and 10 kV were applied to the ionizers and collection plates, respectively.

Nano-safety Management and Exposure Assessment of Nanomaterials Producing Facilities (나노물질 생산시설의 환경노출 평가와 안전관리)

  • Umh, Ha Nee;Roh, Jinkyu;Park, Junsu;Kwak, Byoung Kyu;Lee, Byung Cheon;Choi, Kyunghee;Yi, Jongheop;Kim, Younghun
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.112-117
    • /
    • 2012
  • With the development of nanotechnology, nano-consumer products have been popularized. For the past 10 years, potential risk of nanomaterials to human and environment have been raised carefully. Especially, workers, who directly handle nanomaterials in laboratories and manfacturers, will lead to direct exposure of nanomaterials. Therefore, direct exposure assessment and field monitoring of nanomaterials are required to assess and manage the nanomaterial exposure to human and environment. In this work, two nano-manufacturing companies, which had plasma and sol-gel processes, were selected to analyze the main exposure source and process with in-situ SMPS (scanning mobility particle sizer) and ex-situ TEM (transmission electron microscopy). The results showed that the colloidal nanoparticle in liquid phase was easily evaporated and monitored by SMPS. Most serious thing is that the workers does not know about the potential risk of nanomaterials, and thus they are not taking proper protection activities, such as PPE (personal protective equipment). Therefore, exposure assessment for nanomaterial handling facilities should be additionally carried out, and nano-safety management protocols are also provided.

Potential Exposure of Nanoparticles from Laboratory to Office (실험실에서 사무실로의 나노입자의 잠재적 노출)

  • Shin, Hyeokjin;Kim, Younghun
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.123-130
    • /
    • 2022
  • Nanoparticles are used in various fields such as chemistry, medicine, the environment, and information and communication. With the increasing use of engineered nanomaterials, exposure to nanoparticles is expected to increase in the workplace and the environmental media. However, while nanotechnology industries are expanding, research on the exposure assessment of nanomaterials to humans and the environment is only at a beginning stage. Especially, if nanoparticles with a size of 100 nm or less that are contained in nano-products are released unintentionally, they may pose potential risks to the human body through breathing or skin exposure. Therefore, in this work, the possibility of potential exposure of nanoparticles moving from the laboratory to the office was confirmed, and nanoparticle safety guidelines are proposed. A nano-collector was used to detect nanoparticles in the atmosphere, and through use of a scanning mobility particle sizer it was found that nanoparticle concentrations in the laboratory and the office tended to be similar. On the assumption that nanoparticles attached to a lab-coat move out of the laboratory, a lab-coat to which nanocarbon black was attached was shaken and the concentration of the remaining particles on the lab-coat determined. The results confirmed that sufficient amounts of nanoparticles attached to the lab-coat could move from the laboratory to the office along the path of a researcher; thus, safety guidelines for the handling of lab-coat nanoparticles are required.