DOI QR코드

DOI QR Code

Physico-chemical Characteristics of Submicron Aerosol at West Inflow Regions in the Korean Peninsula III. Physical-Chemical Behavior and Long-range Transport of PM1

한반도 서부유입권역에서 대기 중 에어로졸 성분의 물리·화학적 특성 연구 III. 화학적 거동 및 장거리 이동

  • Park, Taehyun (Department of Environmental Science, Hankuk University of Foreign Studies) ;
  • Ahn, Junyoung (Air Quality Research Division, National Institute of Environmental Research) ;
  • Choi, Jinsoo (Air Quality Research Division, National Institute of Environmental Research) ;
  • Lim, Yongjae (Air Quality Forecasting Division, National Institute of Environmental Research) ;
  • Park, Jinsoo (Air Quality Research Division, National Institute of Environmental Research) ;
  • Kim, Jeongho (APM Engineering Co., Ltd.) ;
  • Oh, Jun (Air Quality Research Division, National Institute of Environmental Research) ;
  • Lee, Yonghwan (Department of Environmental Science, Hankuk University of Foreign Studies) ;
  • Hong, Youdeog (Air Quality Research Division, National Institute of Environmental Research) ;
  • Hong, Jihyung (Air Quality Research Division, National Institute of Environmental Research) ;
  • Choi, Yongjoo (Department of Environmental Science, Hankuk University of Foreign Studies) ;
  • Lee, Taehyoung (Department of Environmental Science, Hankuk University of Foreign Studies)
  • 박태현 (한국외국어대학교 환경학과) ;
  • 안준영 (국립환경과학원 대기환경연구과) ;
  • 최진수 (국립환경과학원 대기환경연구과) ;
  • 임용재 (국립환경과학원 대기질통합예보센터) ;
  • 박진수 (국립환경과학원 대기환경연구과) ;
  • 김정호 (에이피엠 엔지니어링(주)) ;
  • 오준 (국립환경과학원 대기환경연구과) ;
  • 이용환 (한국외국어대학교 환경학과) ;
  • 홍유덕 (국립환경과학원 대기환경연구과) ;
  • 홍지형 (국립환경과학원 대기환경연구과) ;
  • 최용주 (한국외국어대학교 환경학과) ;
  • 이태형 (한국외국어대학교 환경학과)
  • Received : 2017.02.01
  • Accepted : 2017.03.09
  • Published : 2017.04.30

Abstract

Physico-chemical measurement of non-refractory submicron particles($NR-PM_1$) was conducted in Baengnyeong Island, Korea using Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) from 2012 to 2014. Organics and ammoniated sulfate were dominant species in $NR-PM_1$. The organics was found to have similar fractions(approximate 40%) of $NR-PM_1$ during the summer and winter, while the sulfate fractions of $NR-PM_1$ were calculated to be approximately 47% and 31% for the summer and winter, respectively, suggesting the possibility that particles provide non-acidic surfaces for condensation of nitric acid in the winter. The nitrate fractions of approximate 4% and 20% of $NR-PM_1$ were observed in August (summer) and November (winter), respectively, resulting that the relatively low concentration of sulfate in $NR-PM_1$ provided a non-acidic surface for nitric acid condensation and formation of particulate ammoniated nitrate is favored thermodynamically in winter. The new particle formation (NPF) event and particle growth rate were analyzed for each month in 2014 using Scanning Mobility Particle Sizer(SMPS). The Percent of NPF events was the highest in winter, but NPF event was not observed during summer due to relatively high temperature and frequent rainfall. The average particle growth rate was 3.5 nm/h and the highest particle growth rate was 5.5 nm/h in May. We observed the long-range transport of the anthropogenic sulfate from the East Asia during the intensive monitoring period of November between Qingdao and Baengnyeong Island in 2013. The relatively high concentrations of m/z 60 measured in HR-ToF-AMS was observed in May and June at Baengnyeong Island, suggesting the possibility of the influence of biomass burning from the East Asia to the Korean Peninsula.

Keywords

References

  1. Alfarra, M.R., H. Coe, J.D. Allan, K.N. Bower, H. Boudries, M.R. Canagaratna, J.L. Jimenez, J.T. Jayne, A. Garforth, S.M. Li, and D.R. Worsnop (2004) Characterization of Urban and Rural Organic Aerosols In the Lower Fraser Valley Using Two Aerodyne Particulate Mass Spectrometers, Atmospheric Environment, 38, 5745-5758. https://doi.org/10.1016/j.atmosenv.2004.01.054
  2. Canagaratna, M., J. Jayne, J.L. Jimenez, J. Allan, M. Alfarra, Q. Zhang, T. Onasch, F. Drewnick, H. Coe, and A.M. Middlebrook (2007) Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer, Mass Spectrometry Reviews, 26, 185-222. https://doi.org/10.1002/mas.20115
  3. Chen, Y., Y.F. Cheng, S. Nordmann, W. Birmili, H.A.C. Denier van der Gon, N. Ma, R. Wolke, B. Wehner, J. Sun, G. Spindler, Q. Mu, U. Pöschl, H. Su, and A. Wiedensohler (2016) Evaluation of the size segregation of elemental carbon (EC) emission in Europe: influence on the simulation of EC longrange transportation, Atmospheric Chemistry and Physics, 16, 1823-1835. https://doi.org/10.5194/acp-16-1823-2016
  4. Choi, J., J. Kim, T. Lee, Y. Choi, T. Park, J. Oh, J. Park, J. Ahn, H. Jeon, Y. Koo, S. Kim, Y. Hong, and J. Hong (2016a) A Study on Chemical Characteristics of Aerosol Composition at West Inflow Regions in the Korean Peninsula I. Characteristics of PM Concentration and Chemical Components. Journal of Korean Society for Atmospheric Environment, 32(5), 469-484. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2016.32.5.469
  5. Choi, J., J. Kim, T. Lee, Y. Choi, T. Park, J. Ahn, J. Park, H. Kim, Y. Koo, S. Kim, Y. Hong, and J. Hong (2016b) A Study on Chemical Characteristics of Aerosol Composition at West Inflow Regions in the Korean Peninsula, II. Characteristics of Inorganic Aerosol Acidity and Organic Aerosol Oxidation, Journal of Korean Society for Atmospheric Environment, 32(5), 485-500. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2016.32.5.485
  6. Cubison, M.J., A.M. Ortega, P.L. Hayes, D.K. Farmer, D. Day, M.J. Lechner, W.H. Brune, E. Apel, G.S. Diskin, J.A. Fisher, H.E. Fuelberg, A. Hecobian, D.J. Knapp, T. Mikoviny, D. Riemer, G.W. Sachse, W. Sessions, R.J. Weber, A.J. Weinheimer, A. Wisthaler, and J.L. Jimenez (2011) Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies, Atmospheric Chemistry and Physics, 11, 12049-12064. https://doi.org/10.5194/acp-11-12049-2011
  7. DeCarlo, P.F., J.R. Kimmel, A. Trimborn, M.J. Northway, J.T. Jayne, A.C. Aiken, M. Gonin, K. Fuhrer, T. Horvath, and K.S. Docherty (2006) Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer, Analytical Chemistry, 78, 8281-8289. https://doi.org/10.1021/ac061249n
  8. Drewnick, F., S.S. Hings, J. Curtius, G. Eerdekens, and J. Williams (2006) Measurement of fine particulate and gas-phase species during the New Year's fireworks 2005 in Mainz, Germany, Atmospheric Environment, 40, 4316-4327. https://doi.org/10.1016/j.atmosenv.2006.03.040
  9. Drewnick, F., S.S. Hings, P. DeCarlo, J.T. Jayne, M. Gonin, K. Fuhrer, S. Weimer, J.L. Jimenez, K.L. Demerjian, and S. Borrmann (2005) A new time-of-flight aerosol mass spectrometer (TOF-AMS) Instrument description and first field deployment, Aerosol Science and Technology, 39, 637-658. https://doi.org/10.1080/02786820500182040
  10. Guo, H., D.W. Wang, K. Cheung, Z.H. Ling, C.K. Chan, and X.H. Yao (2012) Observation of aerosol size distribution and new particle formation at a mountain site in subtropical Hong Kong, Atmospheric Chemistry and Physics, 12, 9923-9939. https://doi.org/10.5194/acp-12-9923-2012
  11. He, L.Y., Y. Lin, X.F. Huang, S. Guo, L. Xue, Q. Su, M. Hu, S.J. Luan, and Y.H. Zhang (2010) Characterization of high-resolution aerosol mass spectra of primary organic aerosol emissions from Chinese cooking and biomass burning, Atmospheric Chemistry and Physics, 10, 11535-11543. https://doi.org/10.5194/acp-10-11535-2010
  12. He, Z., Y. Kim, K. Ogunjobi, and C. Hong (2003) Characteristics of $PM_{2.5}$ species and long-range transport of air masses at Taean background station, South Korea, Atmospheric Environment, 37, 219-230. https://doi.org/10.1016/S1352-2310(02)00834-8
  13. Hennigan, C.J., M.A. Miracolo, G.J. Engelhart, A.A. May, A.A. Presto, T. Lee, A.P. Sullivan, G.R. McMeeking, H. Coe, C.E. Wold, W.M. Hao, J.B. Gilman, W.C. Kuster, J. de Gouw, B.A. Schichtel, J.L. Collett Jr, S.M. Kreidenweis, and A.L. Robinson (2011) Chemical and physical transformations of organic aerosol from the photo-oxidation of open biomass burning emissions in an environmental chamber, Atmospheric Chemistry and Physics, 11, 7669-7686. https://doi.org/10.5194/acp-11-7669-2011
  14. Huffman, J.A., J.T. Jayne, F. Drewnick, A.C. Aiken, T. Onasch, D.R. Worsnop, and J.L. Jimenez (2005) Design, Modeling, Optimization, and Experimental Tests of a Particle Beam Width Probe for the Aerodyne Aerosol Mass Spectrometer. Aerosol Science and Technology, 39(12), 1143-1163. https://doi.org/10.1080/02786820500423782
  15. Iwamoto, Y., K. Kinouchi, K. Watanabe, N. Yamazaki and A. Matsuki (2016) Simultaneous Measurement of CCN Activity and Chemical Composition of Fine-Mode Aerosols at Noto Peninsula, Japan, in Autumn 2012, Aerosol and Air Quality Research, 16, 2107-2118. https://doi.org/10.4209/aaqr.2015.09.0545
  16. Jayne, J.T., D.C. Leard, X. Zhang, P. Davidovits, K.A. Smith, C.E. Kolb, and D.R. Worsnop (2000) Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles, Aerosol Science and Technology, 33, 49-70. https://doi.org/10.1080/027868200410840
  17. Jeong, C.H., G.J. Evans, M.L. McGuire, R.Y.W. Chang, J.P.D. Abbatt, K. Zeromskiene, M. Mozurkewich, S.M. Li, and W.R. Leaitch (2010) Particle formation and growth at five rural and urban sites, Atmospheric Chemistry and Physics, 10, 7979-7995. https://doi.org/10.5194/acp-10-7979-2010
  18. Jimenez, J.L., J.T. Jayne, Q. Shi, C.E. Kolb, D.R. Worsnop, I. Yourshaw, J.H. Seinfeld, R.C. Flagan, X. Zhang, and K.A. Smith (2003) Ambient aerosol sampling using the aerodyne aerosol mass spectrometer. Journal of Geophysical Research: Atmospheres (1984-2012), 108, D7, 8425. https://doi.org/10.1029/2001JD001213
  19. Khan, M.F., Y. Shirasuna, K. Hirano, and S. Masunaga (2010) Characterization of $PM_{2.5}$, $PM_{2.5-10}$ and PM>10 in ambient air, Yokohama, Japan, Atmospheric Research, 96, 159-172. https://doi.org/10.1016/j.atmosres.2009.12.009
  20. Khoder, M.I. (2002) Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area, Chemosphere, 49, 675-684. https://doi.org/10.1016/S0045-6535(02)00391-0
  21. Li, Y.J., B.P. Lee, L. Su, J.C.H. Fung, and C.K. Chan (2015) Seasonal characteristics of fine particulate matter (PM) based on high-resolution time-of-flight aerosol mass spectrometric (HR-ToF-AMS) measurements at the HKUST Supersite in Hong Kong, Atmospheric Chemistry and Physics, 15, 37-53. https://doi.org/10.5194/acp-15-37-2015
  22. Lee, J.Y., Y.P. Kim, and C.-H. Kang (2011) Characteristics of the ambient particulate PAHs at Seoul, a mega city of Northeast Asia in comparison with the characteristics of a background site, Atmospheric Research, 99(1), 50-56. https://doi.org/10.1016/j.atmosres.2010.08.029
  23. Lee, T., A.P. Sullivan, L. Mack, J.L. Jimenez, S.M. Kreidenweis, T.B. Onasch, D.R. Worsnop, W. Malm, C.E. Wold, W.M. Hao, and J.L. Collett (2010) Chemical Smoke Marker Emissions During Flaming and Smoldering Phases of Laboratory Open Burning of Wildland Fuels, Aerosol Science and Technology 44, i-v.
  24. Lee, T., J. Choi, G. Lee, J. Ahn, J. Park, S.A. Atwood, M. Schurman, Y. Choi, Y. Chung, and J.L. Collett Jr (2015) Characterization of aerosol composition, concentrations, and sources at Baengnyeong Island, Korea using an aerosol mass spectrometer, Atmospheric Environment, 120, 297-306. https://doi.org/10.1016/j.atmosenv.2015.08.038
  25. Matthew, B.M., A.M. Middlebrook, and T.B. Onasch (2008) Collection Efficiencies in an Aerodyne Aerosol Mass Spectrometer as a Function of Particle Phase for Laboratory Generated Aerosols, Aerosol Science and Technology, 42, 884-898. https://doi.org/10.1080/02786820802356797
  26. Middlebrook, A.M., R. Bahreini, J.L. Jimenez, and M.R. Canagaratna (2012) Ecaluation of Composirion-Dependent Collection Efficiencies for the Aerodyne Aerosol Mass Spectrometer using Field Data, Aerosol Sicence and Technology, 46, 258-271. https://doi.org/10.1080/02786826.2011.620041
  27. Mugica, V., E. Ortiz, L. Molina, A. De Vizcaya-Ruiz, A. Nebot, R. Quintana, J. Aguilar, and E. Alcantara (2009) PM composition and source reconciliation in Mexico City, Atmospheric Environment, 43, 5068-5074. https://doi.org/10.1016/j.atmosenv.2009.06.051
  28. Oh, H.-R., C.-H. Ho, J. Kim, D. Chen, S. Lee, Y.-S. Choi, L.-S. Chang, and C.-K. Song (2015) Long-range transport of air pollutants originating in China: A possible major cause of multi-day high-$PM_{10}$ episodes during cold season in Seoul, Korea, Atmospheric Environment, 109, 23-30. https://doi.org/10.1016/j.atmosenv.2015.03.005
  29. Oravisjarvi, K., K. Timonen, T. Wiikinkoski, A. Ruuskanen, K. Heinanen, and J. Ruuskanen (2003) Source contributions to $PM_{2.5}$ particles in the urban air of a town situated close to a steel works. Atmospheric Environment, 37, 1013-1022. https://doi.org/10.1016/S1352-2310(02)01048-8
  30. Park, S.-U. and Y.-H. Lee (2002) Spatial distribution of wet deposition of nitrogen in South Korea. Atmospheric Environment, 36, 619-628. https://doi.org/10.1016/S1352-2310(01)00489-7
  31. Richter, A., J.P. Burrows, H. Nusz, C. Granier, and U. Niemeier (2005) Increase in tropospheric nitrogen dioxide over China observed from space. Nature, 437, 129-132. https://doi.org/10.1038/nature04092
  32. Rose, D., S.S. Gunthe, H. Su, R.M. Garland, H. Yang, M. Berghof, Y.F. Cheng, B. Wehner, P. Achtert, A. Nowak, A. Wiedensohler, N. Takegawa, Y. Kondo, M. Hu, Y. Zhang, M.O. Andreae, and U. Poschl (2011) Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China-Part 2: Size-resolved aerosol chemical composition, diurnal cycles, and externally mixed weakly CCN-active soot particles. Atmospheric Chemistry and Physics, 11, 2817-2836. https://doi.org/10.5194/acp-11-2817-2011
  33. Streets, D.G., N.Y. Tsai, H. Akimoto, and K. Oka (2001) Trends in emissions of acidifying species in Asia, 1985-1997. Water, air, and soil Pollution, 130, 187-192.
  34. Sun, Y.L., Z.F. Wang, P.Q. Fu, T. Yang, Q. Jiang, H.B. Dong, J. Li and J.J. Jia (2013) Aerosol composition, sources and processes during wintertime in Beijing, China. Atmospheric Chemistry and Physics, 13, 4577-4592. https://doi.org/10.5194/acp-13-4577-2013
  35. Wilkening, K.E., L.A. Barrie, and M. Engle (2000) Trans-Pacific air pollution. Science, 290, 65-67. https://doi.org/10.1126/science.290.5489.65
  36. Zhang, J.K., Y. Sun, Z.R. Liu, D.S. Ji, B. Hu, Q. Liu and Y.S. Wang (2014) Characterization of submicron aerosols during a month of serious pollution in Beijing, 2013. Atmospheric Chemistry and Physics, 14, 2887-2903. https://doi.org/10.5194/acp-14-2887-2014

Cited by

  1. Spacial Distribution of PM1.0 Major Compounds from Long Range Transport at the Baegryungdo Super Site: Relationship between PSCF and Cluster Analysis vol.33, pp.4, 2017, https://doi.org/10.5572/KOSAE.2017.33.4.411