• Title/Summary/Keyword: Scanning Image

Search Result 1,090, Processing Time 0.029 seconds

A SCANNING CCD DETECTOR FOR SOLAR ECLIPSE OBSERVATIONS

  • YERSHOV V. N.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.385-386
    • /
    • 1996
  • A wide-field CCD detector for solar eclipse observations is discussed. The CCD is supposed to be of a moderate size, and the image of the corona is obtained by scanning the field of view. Results of the 1995 solar eclipse observation are shown which have been made with a prototype of the scanning CCD detector.

  • PDF

Fast Holographic Image Reconstruction Using Phase-Shifting Assisted Depth Detection Scheme for Optical Scanning Holography

  • Lee, Munseob;Min, Gihyeon;Kim, Nac-Woo;Lee, Byung Tak;Song, Je-Ho
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.599-605
    • /
    • 2016
  • For the implementation of a real-time holographic camera, fast and automatic holographic image reconstruction is an essential technology. In this paper, we propose a new automatic depth-detection algorithm for fast holography reconstruction, which is particularly useful for optical scanning holography. The proposed algorithm is based on the inherent phase difference information in the heterodyne signals, and operates without any additional optical or electrical components. An optical scanning holography setup was created using a heterodyne frequency of 4 MHz with a 500-mm distance and 5-mm depth resolution. The reconstruction processing time was measured to be 0.76 s, showing a 62% time reduction compared to a recent study.

Scanning System and Reproduction of Adjustable Lower Dental Impression Tray (스캐닝 시스템과 하악용 가변형 트레이의 재현성)

  • Cha, Young-Youp;Eom, Sang-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.254-257
    • /
    • 2011
  • This study was performed to development a dental three-dimensional laser scanning system and measure the accuracy of new adjustable lower dental impression trays. Multiple impressions of a resin master model were made with custom, stock and new adjustable trays and vinyl polysiloxane impression material. The lower master model and resulting cast were compared using an dental scanning system. Each 3D image was superimposed onto the lower master model image and analyzed with custom software. Multiple measurements of the lower master model and casts were analyzed to determine the accuracy of tray types.

Study of the Key Technology of Ghost Imaging Based on Rosette Scanning

  • Zhang, Leihong;Kang, Yi;Pan, Zilan;Liang, Dong;Li, Bei;Zhang, Dawei;Ma, Xiuhua
    • Current Optics and Photonics
    • /
    • v.1 no.5
    • /
    • pp.491-499
    • /
    • 2017
  • Ghost imaging offers great potential, with respect to standard imaging, for imaging objects in optically harsh or noisy environments. It can solve the problems that are difficult to solve by conventional imaging techniques. Recently, it has become a hot topic in quantum optics. In this paper, we propose a scheme for ghost imaging based on rosette scanning, named rosette ghost imaging. Sampling a small area sampling instead of the whole object, the instantaneous field of view of rosette scanning is used as the modulation light field in ghost imaging. This scheme reduces energy loss, the number of samples, and the sampling time, while improving the quality of the reconstructed image.

Design and Fabrication of Scanning Backlight System using Flat Fluorescent Lamp (면광원을 사용한 Scanning Backlight System의 설계 및 제작)

  • Chae, Hyung-Jun;Hur, Jeong-Wook;Hwang, Sun-Nam;Lee, Jun-Young;Lim, Sung-Kyoo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.2
    • /
    • pp.29-33
    • /
    • 2008
  • LCD panels are increasingly used to show moving image material, for example in LCD television sets. However, moving images become blurred on LCD panels. One of the causes of motion blur is the slow reaction of LC(liquid crystal) cell to change in the pixel value. Another cause of motion blur is the hold-type characteristic of the LCD panel, during the frame time the image is shown continuously. This type of motion blur can be reduced with a scanning backlight. We have designed and fabricated a scanning backlight system that solves the hold-type characteristic problem in a way that Flat fluorescent lamp divided 6 blocks was scanned 60Hz.

  • PDF

Observation of Morphology, Surface potential and Optical Transmission Images in the Thin Film Using SPM (SPM을 이용한 박막의 모폴로지, 표면전위와 광투과이미지 관찰)

  • Shin, Hoon-Kyu;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.327-330
    • /
    • 2000
  • The scanning Maxwell-stress microscopy (SMM) is a dynamic noncontact electric force microscopy that allows simultaneous access to the electrical properties of molecular system such as surface potential, surface charge, dielectric constant and conductivity along with the topography. The Scanning near-field optical / atomic force microscopy (SNOAM) is a new tool for surface imaging which was introduced as one application of the atomic force microscope (AFM). Operated with non-contact forces between the optical fiber and sample as well as equipped with the piezoscanners, the instrument reports on surface topology without damaging or modifying the surface for measuring of optical characteristic in the films. We report our recent results of its application to nanoscopic study of domain structures and electrical functionality in organic thin films by SMM. Furthermore, we have illustrated the SNOAM image in obtaining the merocyanine dye films as well as the optical image.

  • PDF

Registration of Dental Range Images from a Intraoral Scanner (Intraoral Scanner로 촬영된 치아 이미지의 정렬)

  • Ko, Min Soo;Park, Sang Chul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.3
    • /
    • pp.296-305
    • /
    • 2016
  • This paper proposes a framework to automatically align Dental range image captured by depth sensors like the Microsoft Kinect. Aligning dental images by intraoral scanning technology is a difficult problem for applications requiring accurate model of dental-scan datasets with efficiency in computation time. The most important thing in dental scanning system is accuracy of the dental prosthesis. Previous approaches in intraoral scanning uses a Z-buffer ICP algorithm for fast registration, but it is relatively not accurate and it may cause cumulative errors. This paper proposes additional Alignment using the rough result comes after intraoral scanning alignment. It requires that Each Depth Image of the total set shares some overlap with at least one other Depth image. This research implements the automatically additional alignment system that aligns all depth images into Completed model by computing a network of pairwise registrations. The order of the each individual transformation is derived from a global network and AABB box overlap detection methods.

Flow Visualization of Blood Cell and Detection of Cell Depleted Layer Using a Confocal Laser Scanning Microscope (공초점 레이저 주사 현미경을 이용한 혈구 유동가시화 및 세포공핍층 측정에 관한 연구)

  • Lim, Soo-Hee;Kim, Wi-Han;Lee, Ho;Lee, Choon-Young;Park, Cheol-Woo
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.1
    • /
    • pp.46-52
    • /
    • 2010
  • In the present study, we employed the confocal laser scanning microscopy (CLSM) system to visualize the blood flow field with $1{\times}1{\mu}m^2$ spatial resolution. Based on the confocal microscopic image of red blood cells (RBCs), we performed the velocity vector field measurement and evaluated characteristics of cell migration from the cell depleted layer thickness calculation. The rat and mouse's blood were supplied into a micro glass tubes in vitro. The line scanning rate of confocal microscopy was 15 kHz for a $500{\times}500$ pixels image. As a result, the red blood cell itself can be used as a tracer directly without any kind of invasive tracer particle to get the velocity vector field of blood flow by performing particle image velocimetry (PIV) technique.

A Technique to Improve the Readability of Ancient Inscription by Using Optical Triangulation Measurement Principle (광삼각법 측정 원리를 이용한 금석문 가독성 향상 방법)

  • Lee, Geun-Ho;Ko, Sun-Woo;Choi, Won-Ho
    • Journal of Information Technology Services
    • /
    • v.11 no.sup
    • /
    • pp.103-111
    • /
    • 2012
  • In epigraph field to study ancient scripts, alternative readability improvement technologies have been developed to replace existing rubbing method which has low resolution and causes surface pollution of heritages from the viewpoints of extraction process and used materials. Recently many methods which are based on analysis of pixel data for extracting outlines of the specific image have been developed with advancement of image processing techniques. But these methods are not applicable and the results are not satisfied in the damaged inscriptions which are weathered by wind and rain for a long time and in the narrowed one. In this paper laser scanning techniques which uses optical triangulation measurement principle are developed to minimize scanning error. The proposed techniques are consisted of 3 parts:(1) the understanding of optical triangulation measurement principle to find scanning guideline (2) determinations of points interval, scanning distance and scanning angle to guarantee scanning data quality (3) identification of valid point data area which will be used in registration process. The proposed character identification method contributed in decoding an ancient inscription on SeukBingGo in Kyungju.