• Title/Summary/Keyword: Scanning Device

Search Result 482, Processing Time 0.029 seconds

8 Beam Laser Diode Development for Laser Scanning Unit (Laser Scanning Unit을 위한 8빔 레이저 다이오드 개발)

  • Song, Dae-Gwon;Park, Jong-Keun;Kim, Jae-Gyu;Park, Jung-Hyun;So, Sang-Yang;Kwak, Yoon-Seok;Yang, Min-Sik;Choi, An-Sik;Kim, Tae-Kyung
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.3
    • /
    • pp.111-117
    • /
    • 2010
  • A 780 nm monolithic individually addressable 8-beam diode laser with 10mW optical power was developed for use in a laser scanning unit. Beam to beam spacing is $30\;{\mu}m$ and an air bridge interconnection process was developed for individual operations. From electrical and optical characteristic measurements, the developed device is a suitable optical source for a high speed laser scanning unit in multi-function printing systems and laser beam printers.

Optimization of CdS buffer layers for $Cu_2ZnSnSe_4$ thin-film applications ($Cu_2ZnSnSe_4$ 태양전지의 적용을 위한 최적화 된 CdS 버퍼층 연구)

  • Kim, Gee-Yeong;Jeong, Ah-Reum;Jo, William
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.400-403
    • /
    • 2012
  • $Cu_2ZnSnSe_4$(CZTSe) is emerged as a promising material for thin-film solar cells because of non-toxic, inexpensive and earth abundant more than $Cu(In,Ga)Se_2$ materials. For fabricating compound semiconductor thin-film solar cells, CdS is widely used for a buffer layer which fabricated by a chemical bath deposition method (CBD). Through the experiment, we controlled deposition temperature and mol ratio of solution conditions to find the proper grain 크기 and exact composition. The optimum CdS layers were characterized in terms of surface morphology by using a scanning electron microscope (SEM) and atomic force microscope (AFM). The optimized CdS layer process was applied on CZTSe thin-films. The thickness of buffer layer related with device performance of solar cells which controlled by deposition time. Local surface potential of CdS/CZTSe thin-films was investigated by Kelvin probe force microscopy (KPFM). From these results, we can deduce local electric properties with different thickness of buffer layer on CZTSe thin-films. Therefore, we investigated the effect of CdS buffer layer thickness on the CZTSe thin-films for decreasing device losses. From this study, we can suggest buffer layer thickness which contributes to efficiencies and device performance of CZTSe thin-film solar cells.

  • PDF

Interfacial Energetics of All Oxide Transparent Photodiodes

  • Yadav, Pankaj;Kim, Hong-sik;Patel, Malkeshkumar;Kim, Joondong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.390.1-390.1
    • /
    • 2016
  • The present work explains the interfacial energetics of all oxide transparent photodiodes. The optical, structural and morphological of copper oxides were systematically analyse by UV-Visible spectrometer, X-Ray diffraction, Raman spectroscopy, Scanning electron microscopy (SEM) and Atomic force microscopy measurements (AFM). The UV-Visible result exhibits optical bandgap of Cu2O and CuO as 2.2 and 2.05 eV respectively. SEM and AFM result shows a uniform grain size distribution in Cu2O and CuO thin films with the average grain size of 45 and 40 nm respectively. The results of Current-Voltage and Kelvin probe force microscope characteristics describe the electrical responses of the Cu2O/ZnO and CuO/ZnO heterojunctions photodiodes. The obtained electrical response depicts the approximately same knee voltages with a measurable difference in the absolute value of net terminal current. More over the present study realizes the all oxide transparent photodiode with zero bias photocurrent. The presented results lay the template for fabricating and analysing the self-bias all oxide transparent photodetector.

  • PDF

Mechanical Properties of TiN and DLC coated Rod for Pedicle Screw System (TiN 및 DLC 코팅된 척추용 나사못 시스템 Rod의 기계적 특성 분석)

  • Kang, Kwan-Su;Jung, Tae-Gon;Yang, Jae-Woong;Woo, Su-Heon;Park, Tea-Hyun;Jeong, Yong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.3
    • /
    • pp.183-191
    • /
    • 2017
  • In this study, surface morphology and mechanical property of TiN and DLC coated pedicle screw have been investigated by field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, vickers hardness test, axial gripping, and axial torsional gripping capacity test. From the EDS and XRD results, the composition and crystal structure of TiN and DLC coated surface were verified. The hardness value was increased by TIN and DLC coating, and the DLC coating surface has the highest value. The gripping capacity also showed higher value for TiN and DLC coated specimen than that of non-coated (Ti alloy) surface. The surface morphology of gripping tested specimen showed rougher scratched surface from Ti alloy than TiN and DLC coated layer.

A Study for Stable End Point Detection in 90 nm WSix/poly-Si Stack-down Gate Etching Process (90 nm급 텅스텐 폴리사이드 게이트 식각공정에서 식각종말점의 안정화에 관한 연구)

  • Ko, Yong-Deuk;Chun, Hui-Gon;Lee, Jing-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.3
    • /
    • pp.206-211
    • /
    • 2005
  • The device makers want to make higher density chips on the wafer through scale-down. The change of WSix/poly-Si gate film thickness is one of the key issues under 100 nm device structure. As a new device etching process is applied, end point detection(EPD) time delay was occurred in DPS+ poly chamber of Applied Materials. This is a barrier of device shrink because EPD time delay made physical damage on the surface of gate oxide. To investigate the EPD time delay, the experimental test combined with OES(Optical Emission Spectroscopy) and SEM(Scanning Electron Microscopy) was performed using patterned wafers. As a result, a EPD delay time is reduced by a new chamber seasoning and a new wavelength line through plasma scan. Applying a new wavelength of 252 nm makes it successful to call corrected EPD in WSix/poly-Si stack-down gate etching in the DPS+ poly chamber for the current and next generation devices.

An Analysis on the Resolution of Tomographic Images in STAM (STAM 토모그라픽 영상의 분해능 해석)

  • Hwang, Ki-Hwan;Ko, Dae-Sik;Jun, Kye-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.33-38
    • /
    • 1997
  • In this paper, we analyzed the resolution of tomographic images which can be obtained with Scanning Tomographic Acoustic Microscope(STAM) utilizing the acousto-optic effect. To realize this, lateral and depth resolutions of both ultrasonic transducer and specimen rotating device are obtained by using BFP tomographic reconstruction algorithm. Simulation results show that both rotating devices have a good depth resolution of $1.5{\lambda}$. For the lateral resolution, the specimen rotating device produces $0.53{\lambda}$ in the x and y directions and the transducer rotating device produces $0.56{\lambda}$ and $0.70{\lambda}$ in the x and y directions respectively. These results imply that the specimen rotating device is more suitable for STAM system construction.

  • PDF

Measurement of Internal Temperature Distribution for the Evaluation of Focused Ultrasound (FUS) Stimulation Devices (집속초음파 자극기의 성능평가를 위한 팬텀 내부온도 측정)

  • Doh, Il;Joe, Daniel J.;Kim, Sung Mok;Baik, Kyung Min;Kim, Yong Tae;Park, Seung Min
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.147-152
    • /
    • 2022
  • This research is to measure real-time temperature distribution inside a tissue-mimicking phantom for the safety and effectiveness evaluations of focused ultrasound (FUS) device capable of linear scanning stimulation. Since the focusing area of the FUS stimulation device is smaller than diameter of conventional thermal probe and keeps moving, it is impossible to monitor temperature distribution inside the phantom. By using the phantom with a thin film temperature sensor array inserted, real-time temperature change caused by the FUS device was measured. The translation of the measured temperature peak was also tracked successfully. The present phantom had been experimentally proven to be applicable to validate the performance and safety of the therapeutic ultrasound devices.

Characterization of optical waveguides with near - field scanning optical microscope (근접장 주사 광학현미경을 이용한 광 도파로 특성 연구)

  • Ji, Won-Soo;Kim, Dae-Chan;Lee, Seung-Gol;O, Beom-Hoan;Lee, El-Hang
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.4
    • /
    • pp.301-307
    • /
    • 2002
  • The propagation characteristic of an optical waveguide was investigated by measuring with a near-field scanning optical microscope (NSOM) the evanescent field formed at the neighbor of its core-cladding interface. For this purpose, the NSOM system was developed specially as a form of Photon scanning tunneling microscope. The evanescent field distributions of several channel waveguides were measured at the wavelength of 1550 ㎚, and the usefulness of the system was verified by comparing experimental results with simulation results. In particular, the interference phenomena of the guided modes during their propagation along a multimode channel waveguide could be observed directly from the measured evanescent field distribution.

Design of Electromagnetically Driven Micro Scanning Mirror for Laser Animation System (레이저 디스플레이를 위한 전자력 구동 스캐닝 미러의 설계)

  • Lee, Kyoung-Gun;Jang, Yun-Ho;Yoo, Byung-Wook;Jin, Joo-Young;Lim, Yong-Geun;Kim, Yong-Kweon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.578-585
    • /
    • 2009
  • In this paper, we present the design of an electromagnetic scanning mirror with torsional springs. The scanning mirror consisting of torsional springs and electromagnetic coils was designed for the applications of laser animation systems. We analyzed and optimized three types of torsional springs, namely, straight beam springs (SBS), classic serpentine springs (CSS), and rotated serpentine springs (RSS). The torsional springs were analyzed in terms of electrical resistance, fabrication error tolerance, and resonance mode separation of each type using analytical formula or numerical analysis. The RSS has advantages over the others as follows: 1) A low resistance of conductors, 2) wide resonance mode separation, 3) strong fabrication error tolerance, 4) a small footprint. The double-layer coils were chosen instead of single-layer coils with respect to electromagnetic forces. It resulted in lower power consumption. The geometry of the scanning mirror was optimized by calculations; RSS turn was 12 and the width of double-layer coil was $100{\mu}m$, respectively. When the static rotational angle is 5 degrees, the power consumption of the mirror plate was calculated to be 9.35 mW since the resistance of the coil part and a current is $122{\Omega}$ and 8.75 mA, respectively. The power consumption of full device including the mirror plate and torsional springs was calculated to be 9.63 mW.

Switching and sensing molecular spins by chemical reactions on metal surfaces

  • Kahng, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.63.2-63.2
    • /
    • 2015
  • Controlling and sensing spin states of magnetic molecules such as metallo-porphyrins at the single molecule level is essential for spintronic molecular device applications. Axial coordinations of diatomic molecules to metallo-porphyrins also play key roles in dynamic processes of biological functions such as blood pressure control and immune response. However, probing such reactions at the single molecule level to understand their physical mechanisms has been rarely performed. Here we present on our single molecule association and dissociation experiments between diatomic and metallo-porphyrin molecules on Au(111) describing its adsorption structures, spin states, and dissociation mechanisms. We observed bright ring shapes in NO adsorbed metallo-porphyrin compelxes and explained them by considering tilted binding and precession motion of NO. Before NO exposure, Co-porphryin showed a clear zero-bias peak in scanning tunneling spectroscopy, a signature of Kondo effect in STS, whereas after NO exposures it formed a molecular complex, NO-Co-porphyrin, that did not show any zero-bias feature implying that the Kondo effect was switched off by binding of NO. Under tunneling junctions of scanning tunneling microscope, both positive and negative energy pulses. From the observed power law relations between dissociation rate and tunneling current, we argue that the dissociations were inelastically induced with molecular orbital resonances. Our study shows that single molecule association and dissociation can be used to probe spin states and reaction mechanisms in a variety of axial coordination between small molecules and metallo-porphyrins.

  • PDF