• Title/Summary/Keyword: Scan order

Search Result 587, Processing Time 0.029 seconds

A Study on the Determination of Scan Speed in Whole Body Bone Scan Applying Oncoflash (Oncoflash를 적용한 전신 뼈 영상 검사의 스캔 속도 결정에 관한 연구)

  • Yang, Gwang-Gil;Jung, Woo-Young
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.3
    • /
    • pp.56-60
    • /
    • 2009
  • Purpose: The various studies and efforts to develop program are in progress in the field of nuclear medicine for the purpose of reducing scan time. The Oncoflash is one of the programs used in whole body bone scan which allows to maintain the image quality while to reduce scan time. When Those applications are used in clinical setting, both the image quality and reduction of scan time should be considered, therefore, the purpose of this study was to determine the criteria for proper scan speed. Materials and Methods: The subjects of this study were the patients who underwent whole body bone scan at the departments of nuclear medicine in the Asan Medical Center located in Seoul from 1st to 10th, July, 2008. The whole body bone images obtained in the scan speed of 30cm/min were classified by the total counts into under 800 K, and over 800 K, 900 K, 1,000 K, 1,500 K, and 2,000 K. The image quality were assessed qualitatively and the percentages of those of 1,000K and under of total counts were calculated. The FWHM before and after applying the Oncoflash were analyzed using images obtained in $^{99m}Tc$ Flood and 4-Quadrant bar phantom in order to compare the resolution according to the amount of total counts by the application of the Oncoflash. Considering the counts of the whole body bone scan, the dosed 2~5 mCi were used. 152 patients underwent the measurement in which the counts of Patient Postioning Monitor (PPM) were measured with including head and the parts of chest which the starting point of whole body bone scan from 7th to 26th, August, 2008. The correlations with total counts obtained in the scan speed of 30cm/min among them were analyzed (The exclusion criteria were after over six hours of applying isotopes or low amount of doses). Results: The percentage of the whole body bone image which has the geometric average of total counts of under 1,000K among them obtained in the scan speed of 30cm/min were 17.6%(n=58) of 329 patients. The qualitative analysis of the image groups according to the whole body counts showed that the images of under 1,000K were assessed to have coarse particles and increased noises. The analysis on the FWHM of the images before and after applying the Oncoflash showed that, in the case of PPM counts of under 3.6 K, FWHM values after applying the Oncoflash were higher than that before applying the Oncoflash, whereas, in the case of that of over 3.6 K, the FWHM after applying the Oncoflash were not higher than that before applying the Oncoflash. The average of total counts at 2.5~3.0 K, 3.1~3.5 K, 3.6~4.0 k, 4.1~4.5 K, 4.6~5.0 K, 5.1~6.0 K, 6.1~7.0 K, and 7.1 K over (in PPM) were $965{\pm}173\;K$, $1084{\pm}154\;K$, $1242{\pm}186\;K$, $1359{\pm}170\;K$, $1405{\pm}184\;K$, $1640{\pm}376\;K$, $1,771{\pm}324\;K$, and $1,972{\pm}385\;K$, respectively and the correlations between the counts in PPM and the total counts of image obtained in the scan speed of 30 cm/min demonstrated strong correlation (r=.775, p<.01). Conclusions: In the case of PPM coefficient over 3.6 K, the image quality obtained in the scan speed of 30cm/min and after applying the Oncoflash was similar to that obtained in the scan speed of 15 cm/min. In the case of total counts over 1,000 K, it is expected to reduce scan time without any damage on the image quality. In the case of total counts under 1,000 K, however, the image quality were decreased even though the Oncoflash is applied, so it is recommended to perform the re-image in the scan speed of 15 cm/min.

  • PDF

A Study of Data Management Methods through Shake Correction of Underwater Investigation Using High Resolution Side Scan SONAR (흔들림 보정을 통한 고해상 사이드스캔소나의 데이터 관리기법 연구)

  • Yi, Jong-Hwa;Kim, Young-Seok;Park, Chul;Choi, Sang-Sik;Lee, Heung-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.94-100
    • /
    • 2017
  • In the case of the side scan sonar operated by the towing method, the underwater structure electric jig was developed because there is a difficulty in the cross-sectional survey that the user wants when conducting the survey. However, in the case of the sound wave photographing method using the electric jig, since the boat and the sonar behaves as one body, data distortion has occurred due to various problems according to working environment, such as, the rolling phenomenon of the boat due to the wave and the fluctuation of the sonic image due to the inoperability of the boat driver. Therefore, in order to solve the image blurring caused by the operation of the equipment for underwater survey of the existing side scan sonar, in this research, the program was supplemented to enable the shake correction by attaching the shake correction sensor and developing the shake correction algorithm. In order to verify the improvement of the sonar data resolution, the sonic images before and after the shake correction were collected through on-site investigation and the analysis of the sonic image data acquired by a diver measuring the actual damage length and depth. This study is expected to contribute to the development of sonar imaging technique of the underwater surface of the structure and bed surface of the sea or a river using the side scan sonar in the future.

The Correction Factor of Sensitivity in Gamma Camera - Based on Whole Body Bone Scan Image - (감마카메라의 Sensitivity 보정 Factor에 관한 연구 - 전신 뼈 영상을 중심으로 -)

  • Jung, Eun-Mi;Jung, Woo-Young;Ryu, Jae-Kwang;Kim, Dong-Seok
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.3
    • /
    • pp.208-213
    • /
    • 2008
  • Purpose: Generally a whole body bone scan has been known as one of the most frequently executed exams in the nuclear medicine fields. Asan medical center, usually use various gamma camera systems - manufactured by PHILIPS (PRECEDENCE, BRIGHTVIEW), SIEMENS (ECAM, ECAM signature, ECAM plus, SYMBIA T2), GE (INFINIA) - to execute whole body scan. But, as we know, each camera's sensitivity is not same so it is hard to consistent diagnosis of patients. So our purpose is when we execute whole body bone scans, we exclude uncontrollable factors and try to correct controllable factors such as inherent sensitivity of gamma camera. In this study, we're going to measure each gamma camera's sensitivity and study about reasonable correction factors of whole body bone scan to follow up patient's condition using different gamma cameras. Materials and Methods: We used the $^{99m}Tc$ flood phantom, it recommend by IAEA recommendation based on general counts rate of a whole body scan and measured counts rates by the use of various gamma cameras - PRECEDENCE, BRIGHTVIEW, ECAM, ECAM signature, ECAM plus, IFINIA - in Asan medical center nuclear medicine department. For measuring sensitivity, all gamma camera equipped LEHR collimator (Low Energy High Resolution multi parallel Collimator) and the $^{99m}Tc$ gamma spectrum was adjusted around 15% window level, the photo peak was set to 140-kev and acquirded for 60 sec and 120 sec in all gamma cameras. In order to verify whether can apply calculated correction factors to whole body bone scan or not, we actually conducted the whole body bone scan to 27 patients and we compared it analyzed that results. Results: After experimenting using $^{99m}Tc$ flood phantom, sensitivity of ECAM plus was highest and other sensitivity order of all gamma camera is ECAM signature, SYMBIA T2, ECAM, BRIGHTVIEW, IFINIA, PRECEDENCE. And yield sensitivity correction factor show each gamma camera's relative sensitivity ratio by yielded based on ECAM's sensitivity. (ECAM plus 1.07, ECAM signature 1.05, SYMBIA T2 1.03, ECAM 1.00, BRIGHTVIEW 0.90, INFINIA 0.83, PRECEDENCE 0.72) When analyzing the correction factor yielded by $^{99m}Tc$ experiment and another correction factor yielded by whole body bone scan, it shows statistically insignificant value (p<0.05) in whole body bone scan diagnosis. Conclusion: In diagnosing the bone metastasis of patients undergoing cancer, whole body bone scan has been conducted as follow up tests due to its good points (high sensitivity, non invasive, easily conducted). But as a follow up study, it's hard to perform whole body bone scan continuously using same gamma camera. If we use same gamma camera to patients, we have to consider effectiveness of equipment's change by time elapsed. So we expect that applying sensitivity correction factor to patients who tested whole body bone scan regularly will add consistence in diagnosis of patients.

  • PDF

Design and Implementation of Flaw Image processing System for Automated Ultrasonic Testing System (자동 초음파 검사를 위한 결함 영상 처리 시스템의 설계 및 구현)

  • Kim, Han-Jong;Park, Jong-Hoon;Kim, Chul-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.225-232
    • /
    • 2010
  • In this study, an automated ultrasonic testing system and post signal and image processing techniques are developed in order to construct ultrasonic flaw images in weldments. Image processing algorithms are built into the flaw image processing system for the automated ultrasonic testing system. The developed signal and image analysis algorithms addressed in this study include an A-Scan data compression algorithm, ultrasonic image amplification algorithm and B-scan flaw image correction algorithm(SAFT). This flaw image processing system for the automated ultrasonic testing system can be applied to various inspection fields.

Development of Optimized State Assignment Technique for Partial Scan Designs (부분 스캔을 고려한 최적화된 상태할당 기술 개발)

  • Cho Sang-Wook;Yang, Sae-Yang;Park, Sung-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.11
    • /
    • pp.67-73
    • /
    • 2000
  • The state assignment for a finite state machine greatly affects the delay, area, and testabilities of the sequential circuits. In order to minimize the dependencies among groups of state variables, therefore possibly to reduce the length and number of feedback cycles, a new state assignment technique based on m-block partition is introduced in this paper. After the completion of proposed state assignment and logic synthesis, partial scan design is performed to choose minimal number of scan flip-flops. Experiment shows drastic improvement in testabilities while preserving low area and delay overhead.

  • PDF

Novel Scanning Tunneling Spectroscopy for Volatile Adborbates

  • Choi, Eun-Yeoung;Lee, Youn-Joo;Lyo, In-Whan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.58-58
    • /
    • 2010
  • Reactive or unstable adsorbates are often difficult to study spectroscopically. They may have, for instance, resonance states lying close to the Fermi level, inducing them to desorb or decompose by the probe itself, low-energy tunneling electrons. In order to overcome this limitation, we developed a novel method, which we call x-ramp scan. The method sweeps the bias voltage, with the simutaneous scan along the imaging direction, in a constant current mode. This mapping yields the tip-height variation as a function of bias, or Z(V), at nominally always fresh surface. We applied this method to the investigation of methanol-induced molecular features, attributed to methoxy, found on NiAl(110) surface. These were produced by methanol molecules deposited by a pulse injection method onto the metallic surface. Our study shows adsorbed methoxy are very reactive to the bias voltage, rendering the standard spectroscopy useless. Our new x-ramp scan shows that the decomposition of adsorbates occurs at the sample bias of 3.63 V, and proceeds with the lifetime of a few milliseconds. The details of the method will be provided at the discussion.

  • PDF

A Study on the Compensation of Temperature-Dependent Misfiring in AC PDP by the progressively increasing Address Voltage Method (AC PDP의 순차 증가 Address 전압 방식에 의한 고온 오방전 대책에 관한 연구)

  • Kim, J.Y.;Lee, S.J.;Kwon, B.D.;Kim, D.H.;Lee, H.J.;Park, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1623-1627
    • /
    • 2002
  • If the ambient temperature rises in AC PDP, some of the discharged cells arc turned off because of the addressing failure. Particularly, the addressing failure at the last scan line is more serious than at the first scan line. The failure is accompanied with delay of the address discharge and reduction of total charge involved. In order to compensate this kind of misfiling, the progressively increasing address voltage waveform is used instead of constant one. In this method, we found that the total charge and address time at the last scan line are similar to those of the first line. As a result, we can have stable discharge without misfiring even at the high ambient temperature.

  • PDF

Segmentation of Computed Tomography using The Geometric Active Contour Model (기하학적 동적 외곽선 모델을 이용한 X-ray 단층촬영영상의 영상추출)

  • Jang, D.P.;Kim, S.I.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.541-545
    • /
    • 1997
  • This paper presents a modified geometric active contour model or edge detection and segmentation of computed tomography(CT) scan images. The method is based on the level setup approach developed by Osher and Sethian and the modeling of propagation fronts with curvature dependent speeds by Malladi. Based on above algorithms, the geometric active contour is obtained through a particular level set of hypersurface lowing along its gradient force and curvature force. This technique retains the attractive feature which is topological and geometric flexibility of the contour in recovering objects with complex shapes and unknown topologies. But there are limitations in this algorithm which are being not able to separate the object with weak difference from neighbor object. So we use speed limitation filter to overcome those problems. We apply a 2D model to various synthetic cases and the three cases of real CT scan images in order to segment objects with complicated shapes and topologies. From the results, the presented model confirms that it attracts very naturally and efficiently to the desired feature of CT scan images.

  • PDF

Analysis of Beam Scan Characteristics of Offset Reflector Antennas (오프셋 반사경 안테나의 빔 스캔 특성 해석)

  • 최학근
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.2
    • /
    • pp.207-217
    • /
    • 1999
  • When the feed of an offset reflector antenna is displaced from the focal point, the phase distortion results in the aperture field distribution, which in turn gives rise to a deviation of maximum beam, a decrease in gain, and an increase in sidelobes. In order to study these scan characteristics, an offset reflector antenna with the defocused feed is analyzed by a series expansion method using the Zernike polynomials, which can be used to calculate radiation pattern fast and exactly. And from the analyzed results, scan loss data in terms of reflector geometry are presented. And also, the BDF (beam deviation factor) expression is derived with offset reflector configuration analytically, and calculated results and simple formula of BDF are presented for determining beam deviation characteristics.

  • PDF

Design of Scan-Capable Fabry Perot Cavity Antenna Using Artificial Magnetic Conductors (인공 자기 도체를 이용한 스캔 가능한 패브리 패롯 공진기형 안테나 설계)

  • Kim, Myong-Gyun;Kim, Jong-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.9
    • /
    • pp.1025-1033
    • /
    • 2012
  • Fabry-Perot cavity(FPC) antennas with artificial magnetic conductor(AMC) surface are designed in order to provide scan capability by $4{\times}1$ array feed inside the cavity. The proposed antenna, excited by $4{\times}1$ thinned array, not only achieve higher directivities but also improve suppression of sidelobe level(SLL) relative to that of the thin array alone. The FPC antenna with the height of a quarter wavelength generate maximum gain of 19 dB, SLL suppression of 14 dB and maximum scan angle of $8^{\circ}$ under the feed phase difference of $90^{\circ}$ at the design frequency of 12 GHz.