부분 스캔을 고려한 최적화된 상태할당 기술 개발

Development of Optimized State Assignment Technique for Partial Scan Designs

  • 조상욱 (漢陽大學校 電子計算學科) ;
  • 양세양 (釜山大學校 컴퓨터工學科) ;
  • 박성주 (漢陽大學校 電子計算學科)
  • 발행 : 2000.11.01

초록

유한상태기의 상태할당은 이로부터 구현되는 순차회로의 속도, 면적, 테스트가능도에 큰 영향을 미친다. 본 논문에서는 상태변수 그룹들 사이에 상호 의존성(dependency)을 최소화하여 스캔선택이 필요한 플립플롭 수를 최소화하기 위한 m-블록 분할을 이용한 새로운 상태할당 기술을 소개한다. 제안되는 방법을 통하여 우선 상태할당을 수행하고 논리 합성을 거친 후에 부분 스캔 설계가 이루어진다. 벤치마크 회로에 대한 실험 결과 면적과 속도 면에서 최적을 유지한 채로 테스트가능도가 현저히 개선되었음을 확인하였다.

The state assignment for a finite state machine greatly affects the delay, area, and testabilities of the sequential circuits. In order to minimize the dependencies among groups of state variables, therefore possibly to reduce the length and number of feedback cycles, a new state assignment technique based on m-block partition is introduced in this paper. After the completion of proposed state assignment and logic synthesis, partial scan design is performed to choose minimal number of scan flip-flops. Experiment shows drastic improvement in testabilities while preserving low area and delay overhead.

키워드

참고문헌

  1. M. Abramovici et al., Digital Systems Testing and Testable Design, Computer Science Press, 1994
  2. K. T. Cheng and V. D. Agrawal, A Partial Scan Method for Sequential Circuits with Feedback, IEEE Trans. on Computers, Vol. 39, No. 4, pp. 544-548, April 1990 https://doi.org/10.1109/12.54847
  3. Randy H. Katz, Contemporary Logic Design, University of California Benjamin Cummings/Addison Wesley Publishing Company, 1993
  4. Xuejun Du, Gary Hachtel, Bill Lin, and A. Richard Newton, 'MUSE: A MUltilevel Symbolic Encoding Algorithm for State Assignment,' IEEE Trans on CAD., Vol. 10, NO. 1, pp. 28-38, January 1991 https://doi.org/10.1109/43.62789
  5. E. Goldberg et al., Theory and Algorithms for Hypercube Embedding, IEEE Trans on CAD., Vol. 17, pp. 472-488, June 1998 https://doi.org/10.1109/43.703829
  6. S Yang and M. J. Ciesielski, 'Optimum and Suboptimum Algorithms for Input Encoding and Its Relationship to Logic Minimization,' IEEE Trans. on CAD., Vol 10. No. 1. pp. 4-12, Jan. 1991 https://doi.org/10.1109/43.62787
  7. D. B. Armstrong, A Programmed Algorithm for Assigning Internal Codes to Sequential Machines, IRE Trans. on Computers, Vol. EC-11, pp. 466-472, Aug. 1962
  8. G. De Micheli, Symbolic Design of Combinational Sequential Logic Circuits Implemented by Two-level Logic Macros, IEEE TCAD, Vol. CAD-5, pp. 597-616, Oct. 1986
  9. S. Devadas et al., MUSTANG: State assignment of finite state machines targeting multi-level logic implementations, IEEE TCAD. Vol. 7, pp.1290-1300, Dec. 1988 https://doi.org/10.1109/43.16807
  10. T. Villa et al., Synthesis of FSMs: Logic Optimization. New York: Kluwer Academic, 1997
  11. K. T. Cheng, and V. D. Agrawal, 'Design of Sequential Machines for Efficient Test Generation,' in Proc. of ICCAD, pp, 358-361, 1989 https://doi.org/10.1109/ICCAD.1989.76969
  12. R. K. Brayton, G. D. Hatchel, C. T. McMullen, and A. L. Sangiovanni-Vincentelli, Logic Minimization Algorithms for VLSI Synthesis, Norwell, MA: Kluwer Academic, 1984
  13. Z. Kohavi, Switching and Finite Automata Theory, McGraw-Hill, 1978