• 제목/요약/키워드: Scan method

검색결과 1,528건 처리시간 0.03초

New Protocol at Fast Scan Mode for Sea-surface Small Target Detection

  • Cha, Sangbin;Park, Sanghong;Jung, Jooho;Choi, Inoh
    • 대한임베디드공학회논문지
    • /
    • 제17권2호
    • /
    • pp.101-107
    • /
    • 2022
  • In this article, we propose a new protocol at fast scan mode for a sea-surface small target detection. The conventional fast scan mode is composed of coherent intrascan integration to suppress sea clutter and non-coherent interscan integration to exclude sea spikes. The proposed method realizes the coherent interscan integration by the new Fourier relationship between carrier-frequency and initial-radial-range, which can be analytically derived by using multiple carrier frequencies at fast scan mode, leading to improved detection performance, compared to the conventional non-coherent methods. In simulations, our proposed method is verified.

유한상태머신의 완벽한 안정성 보장에 관한 연구 (A Study on Insuring the Full Reliability of Finite State Machine)

  • 양선웅;김문준;박재흥;장훈
    • 인터넷정보학회논문지
    • /
    • 제4권3호
    • /
    • pp.31-37
    • /
    • 2003
  • 본 논문에서는 유한상태머신을 위한 효율적인 비주사 DFT (design-for-testability) 기법을 제안한다. 제안된 기법은 순차회로 모델이 아닌 조합회로 모델을 사용한 ATPG를 수행하여 짧은 테스트 패턴 생성 시간과 완벽한 고장 효율을 보장한다. 또한 완전주사 기법이나 다른 비주사 DFT 기법에 비해 적은 면적 오버헤드를 보이며 테스트 패턴을 칩의 동작속도로 인가한다는 장점이 있다. 실험결과에서는 MCNC`91 벤치마크 회로를 이용하여 제안된 기법의 효율성을 입증한다.

  • PDF

Image Enhancement of Simplified Ultrasonic CT Using Frequency Analysis Method

  • Kim, kyung-Cho;Hiroaki Fukuhara;Hisashi Yamawaki
    • Journal of Mechanical Science and Technology
    • /
    • 제16권12호
    • /
    • pp.1627-1632
    • /
    • 2002
  • In this paper, a simplified ultrasonic CT system, which uses the information in three directions, that is, 90°, +45° and -45°about the inspection plane, is applied to the high strength steel, and the frequency analysis method for enhancing the C scan or CT image is developed. This frequency analysis method is based on the frequency response property of the material. By comparing the magnitudes in the frequency domain, the special frequency which shows a significant difference between the welded joint and base material was found and used to obtain a C scan or CT image. Experimental results for several kinds of specimens, having a welded joint by electron beam welding, a weld joint by arc welding, on a fatigue crack, showed that the obtained C scan or CT image has better resolution than the results of previous experiments using the maximum value of the received waveform.

라인스캔 카메라 형 광학검사기틀 위한 경로계획 방법 (A Path Planning Method for Automatic Optical Inspection Machines with Line Scan Camera)

  • 채호병;김환용;박태형
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.333-334
    • /
    • 2007
  • We propose a path planning method to decrease a inspection lead time of line scan camera in SMT(surface mount technology) in-line system. The inspection window area of printed circuit board should be minimized to consider the FOV(field of view) of line scan camera so that line scan inspector is going to find a optimal solution of path planning. We propose one of the hierarchical clustrering algorithm for a given board. Comparative simulation results are presented to verify the usefulness of proposed method.

  • PDF

흉부CT 검사 시 HRCT 영상 재구성의 유용성 (Usefulness Evaluation of HRCT using Reconstruction in Chest CT)

  • 박성민;김긍식;강성민;유병규;이기배
    • 대한디지털의료영상학회논문지
    • /
    • 제17권1호
    • /
    • pp.13-18
    • /
    • 2015
  • Purpose : Skip the repetitive HRCT axial scan in order to reduce the exposure of patients during chest HRCT scan, Helical Scan Data into a reconstructed image, and exposure of the patient change and visually evaluate the usefulness of the HRCT images. Materials and method : Patients were enrolled in the survey are 50 people who underwent chest CT scans of patients who presented to the hospital from January 2015 to March 2015. 50 people surveyed 22 people men and 28 people women people showed an average distribution of 30 to 80 years age was 48 years. 50 patients to Somatom Sensation 64 ch (Siemens) model with 120 kVp tube voltage to a reference mAs tube current to mAs (Care dose, Siemens) as a whole, including the lungs and the chest CT scan was performed. Scan upon each patient CARE dose 4D (Automatic exposure control, Siemens Medical Solution Erlangen, Germany) was to maintain the proper radiation dose scan every cross-section through a device that automatically adjusts the tube current of. CT scan is the rotation time of the Tube slice collimation, slice width 0.6 mm, pitch factor was made under the terms of 1.4. CT scan obtained after the raw data (raw data) to the upper surface of the axial images and coronal images for each slice thickness 1 mm, 5 mm intervals in the high spatial frequency calculation method (hight spatial resolution algorithm, B60 sharp) was the use of the lung window center -500 HU, windows were reconstructed into images in the interval -1000 HU to see. Result : 1. Measure the total value of DLP 50 patients who proceed to chest CT group A (Helical Scan after scan performed with HRCT) and group B (Helical Scan after the HR image reconstruction to the original data) compared with the group divided, analysis As a result of the age, but show little difference for each age group it had a decreased average dose of about 9%. 2. A Radiation read the results of the two Radiologist and a doctor upper lobe and middle lobe of the lung takes effect the visual evaluation is not a big difference between the two images both, depending on the age of the patient, especially if the blood vessels of the lower lobe (A: 3.4, B: 4.6) and bronchi(A: 3.8, B4.7) image shake caused by breathing in anxiety (blurring lead) to the original data (raw data) showed that the reconstructed image is been more useful in diagnostic terms. Conclusion : Scan was confirmed a continuous, rapid motion video to get Helical scan is much lower lobe lung reduction in visual blurring, Helical scan data to not repeat the examination by obtaining HRCT images reorganization reduced the exposure of the patient.

  • PDF

신경망을 이용한 광조형 작업변수 결정 (Determination of Process Parameters in Stereolithography using Neural Network)

  • 이은덕;심재형;백인환
    • 한국정밀공학회지
    • /
    • 제19권10호
    • /
    • pp.147-155
    • /
    • 2002
  • In the stereolithography process, the accuracy of product depends on laser power, scan speed, scan width, scan pattern, layer thickness, resin characteristics and so on. Therefore, appropriate process parameters are required for an accurate prototype. This paper presents a method to determine the key process parameters, i.e., laser scan speed, hatching space, and layer thickness based on scan length, scan area, and layer slope. In order to determine these parameters, three neural networks are employed to represent operator’s experience and knowledge. Optimum values on scan speed, hatching space and layer thickness are recommended to improve the surface roughness and build time on the developed SLA machine.

마이크로 광 조형기술에서 수지경화현상을 고려한 레이저 주사경로 생성 (Generation of Laser Scan Path Considering Resin Solidification Phenomenon in Micro-stereolithography Technology)

  • 조윤형;조동우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.1037-1040
    • /
    • 2002
  • In micro-stereolithography technology, fabrication conditions that include laser power, laser scan speed, laser scan pitch, and material property of photopolymer such as penetration depth and critical exposure are considered as major process variables. But the existing scan path generation methods based only on CAD model have not taken them into account, which has resulted in cross-section dimension of low accuracy. Thus, to enhance cross-section dimensional accuracy, the physical resin solidification n phenomena should be reflected in laser scan path generation and stage operating code. In this paper, multi-line experiments based on single line solidification model are performed. And the method for improving cross-section dimensional accuracy is presented, which is to apply the database based on experimental results to laser scan path generation.

  • PDF

멀티 드롭 멀티 보드 시스템을 위한 새로운 IEEE 1149.1 경계 주사 구조 (New IEEE 1149.1 Boundary Scan Architecture for Multi-drop Multi-board System)

  • 배상민;송동섭;강성호;박영호
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권11호
    • /
    • pp.637-642
    • /
    • 2000
  • IEEE 1149.1 boundary scan architecture is used as a standard in board-level system testing. The simplicity of this architecture is an advantage in system testing, but at the same time, it it makes a limitation of applications. Because of several problems such as 3-state net conflicts, or ambiguity issues, interconnect testing for multi-drop multi-board systems is more difficult than that of single board systems. A new approach using IEEE 1149.1 boundary scan architecture for multi-drop multi-board systems is developed in this paper. Adding boundary scan cells on backplane bus lines, each board has a complete scan-chain for interconnect test. This new scan-path insertion method on backplane bus using limited 1149.1 test bus less area overhead and mord efficient than previous approaches.

  • PDF

Gated Cardiac Blood Pool scan에서의 심장 주위 배후방사능 관심영역 설정시 산란선의 영향을 감소시키기 위한 연구 (Study a Technique for Reducing the Influence of Scattered Rays from Surrounding Organs to the Heart during Gated Cardiac Blood Pool scan)

  • 김정열;박훈희;남궁혁;조석원;김재삼;이창호
    • 핵의학기술
    • /
    • 제12권1호
    • /
    • pp.33-38
    • /
    • 2008
  • Purpose: The Gated cardiac blood pool scan is non-invasive method that a quantitative evaluation of left ventricular function. Also this scan have shown the value of radionuclide ejection fraction measurements during the course of chemotherapy as a predictor of cardiac toxicity. Therefore a reliable method of monitoring its cardiotoxic effects is necessary. the purpose of this study is to minimize the overestimate of left ventricular ejection fraction (LVEF) by modified body position to reduce the influence of scattered rays from surrounding organs of the heart in the background region of interest. Materials and Methods: Gated cardiac blood pool scan using in vivo $^{99m}Tc$-red blood cell (RBC) was carried out in 20 patients (mean $44.8{\pm}8.6$ yr) with chemotherapy for a breast carcinoma. Data acquisition requires about 600 seconds and 24 frames of one heart cycle by the multigated acquisition mode, Synchronization deteriorates toward the end of the cycle and with the distance from the trigger signal (R-wave) by ECG gating. Gated cardiac blood pool scan was studied with conventional method (supine position and the detector head in $30-45^{\circ}$ left anterior oblique position and caudal $10-20^{\circ}$ tilt) and compared with modified method (left lateral flexion position with 360 mL of drinking water). LVEF analysis was performed by using the automatically computer mode. Results: The ROI counts of modified scan method were lower than LV conventional method ($1429{\pm}251$ versus $1853{\pm}243$, <0.01). And LVEF of modified method was also decrease compared with conventional method ($58.3{\pm}5.6%$ versus $65.3{\pm}6.1%$, <0.01). Imaging analysis indicated that stomach was expanded because of water and spleen position was changed to lateral inferior compared with conventional method. Conclusion: This study shows that the modified method in MUGA reduce the influence of scattered rays from surrounding organs. Because after change the body position to left lateral flexion and drinking water, the location of spleen, left lobe of liver and stomach had changed and they could escaped from background ROI. Therefore, modified method could help to minimize the overestimate LVEF (%).

  • PDF

The Optimization of Scan Timing for Contrast-Enhanced Magnetic Resonance Angiography

  • Jongmin J. Lee;Phillip J. Tirman;Yongmin Chang;Hun-Kyu Ryeom;Sang-Kwon Lee;Yong-Sun Kim;Duk-Sik Kang
    • Korean Journal of Radiology
    • /
    • 제1권3호
    • /
    • pp.142-151
    • /
    • 2000
  • Objective: To determine the optimal scan timing for contrast-enhanced magnetic resonance angiography and to evaluate a new timing method based on the arteriovenous circulation time. Materials and Methods: Eighty-nine contrast-enhanced magnetic resonance angiographic examinations were performed mainly in the extremities. A 1.5T scanner with a 3-D turbo-FLASH sequence was used, and during each study, two consecutive arterial phases and one venous phase were acquired. Scan delay time was calculated from the time-intensity curve by the traditional (n = 48) and/or the new (n = 41) method. This latter was based on arteriovenous circulation time rather than peak arterial enhancement time, as used in the traditional method. The numbers of first-phase images showing a properly enhanced arterial phase were compared between the two methods. Results: Mean scan delay time was 5.4 sec longer with the new method than with the traditional. Properly enhanced first-phase images were found in 65% of cases (31/48) using the traditional timing method, and 95% (39/41) using the new method. When cases in which there was mismatch between the target vessel and the time-intensity curve acquisition site are excluded, erroneous acquisition occurred in seven cases with the traditional method, but in none with the new method. Conclusion: The calculation of scan delay time on the basis of arteriovenous circulation time provides better timing for arterial phase acquisition than the traditional method.

  • PDF