• Title/Summary/Keyword: Scaled Mode

Search Result 145, Processing Time 0.027 seconds

Attitude SCAS Design for 40% Scaled Smart UAV (40% 축소형 스마트 무인기 비행제어기 설계)

  • Lee, Jang-Ho;Hwang, Tai-Won;Choi, Ji-Young;Kim, Eung-Tai
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.1-7
    • /
    • 2007
  • The control design for attitude and yaw rate of 40 % scaled SMART UA Vhas been performed. Analytic selection method for a control gain is proposed to meet the design specification of desired time response considering stability margin. The sliding mode attitude controller is also proposed and compared with the simulation results of a linear controller. Additionally, a velocity and height tracking controller is devised to prepar for the flight test.

  • PDF

Seismic Response Characteristics of the Main Building of Bongjeong Temple (봉정사 대응전의 지진응답 특성)

  • Joo, Seok-Jun;Hong, Sung-Gul;Kim, Nam-Hee;Lee, Young-Wook;Jeong, Seong-Jin;Hwang, Jong-Kook
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.235-240
    • /
    • 2007
  • For the identification of the 3 dimensional dynamic characteristics of the Bongjeong Temple, the dynamic test for 1/3 scaled model was performed. Dynamic test with impulse excitation and vibration table excitation can provide useful data for the estimation of dynamic characteristics such as natural frequencies, damping ratios, mode shapes and stiffness center. This will complement the previous research from the 2-dimensional static test and provide the reference data for the enhanced structural analysis of the traditional wooden structures.

  • PDF

The Performance Evaluation of Photovoltaic-integrated Lightshelf Systems (PV 일체형 태양광발전 광선반시스템의 성능평가)

  • Park, Hoon;Chung, Yu-Gun;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.12 no.6
    • /
    • pp.129-134
    • /
    • 2012
  • The lightshelf system, a daylighting device, has been applied to improve the visual environment by optimal light distributions and intense illumination levels of a interior. Also, The photovoltaic is one of the most important sustainable technologies appliable to architectures. This study aims to evaluate the performance of photovoltaic integrated lightshelf system. For the study, the 1/5 scaled office models were made and the field tests were experimented under clear sky conditions. The power ratio has been analyzed to evaluate the performance of photovoltaic integrated lightshelf system. As results, the power performance was high on photovoltaic lightshelf installation angle $0^{\circ}$. And the performance was reduced on 23(%) by installation angle $15^{\circ}$ and 63(%) by installation angle $30^{\circ}$.

Estimations of Offshore Structure Damages by Modal Perturbation Method (Modal-Perturbation 기법을 이용한 항만 구조물의 손상부위 추정)

  • 조병완;한상주
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.209-217
    • /
    • 1996
  • An Inverse modal perturbation method was applied to estimate the assessments of the damages at the large-scaled marine structure, such as pier or dolphin, from the structural dynamic natural frequencies and mode shape. Vibrations of structural stiffness, natural frequencies and mode shapes from the eigenvalue analysis lead to the modal peturbation equations, which were considered with a second order term. This paper estimates the assessments of the damages for the structure with the decreased stiffness and shows the convergence of perturbation equation.

  • PDF

Buckling Characteristics of the KALIMER-150 Reactor Vessel Under Lateral Seismic Loads and the Experimental Verification Using Reduced Scale Cylindrical Shell Structures

  • Koo Gyeong-Hoi;Lee Jae-Han
    • Nuclear Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.537-546
    • /
    • 2003
  • The purpose of this paper is to investigate the buckling characteristics of a conceptually designed KALIMER-150(Korea Advanced LIquid MEtal Reactor, 150MWe) reactor vessel and verify the buckling behavior using the reduced scale cylindrical shell structures. To do this, nonlinear buckling analyses using finite element method and evaluation formulae are carried out. From the results, the KALIMER-150 reactor vessel exhibits a dominant bending buckling mode and is significantly affected by the plastic behavior. The interaction effects with the vertical seismic load cause the lateral buckling load to be slightly decrease. From the results of the buckling experiments using reduced scaled cylindrical shell structures, it is verified that the buckling modes such as pure bending, pure shear, and mixed(bending plus shear) mode clearly appear under a lateral load corresponding to the slenderness ratio of cylinder.

Experimental investigation on in-plane seismic behavior of multistory opening masonry walls with two different failure modes

  • Xin, Ren;Bi, Dengshan;Huang, Wei
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.479-488
    • /
    • 2022
  • Aiming to examine different failure patterns in multistory URM walls, two 1/3 scaled three-story and three-bay URM models were designed for the quasi-static loading tests to contrastively investigate the failure processes and characteristics of the multistory URM walls. Two different failure responses were observed with special attention paid to the behavior of spandrel-failure mode. By evaluating the seismic performance and deformation behavior of two test walls, it is demonstrated that spandrels, that haven't been properly designed in some codes, are of great significance in the failure of entire URM walls. Additionally, compared with pier-failure mode, spandrel-failure for multistory URM building is more reasonable and advisable as its effectively participation in energy dissipation and its efficiently improvement on seismic capacity and deformation in the overall structure. Furthermore, the experimental results are beneficial to improve seismic design and optimize reinforcement method of URM buildings.

Analytical and experimental modal analyses of a highway bridge model

  • Altunisik, Ahmet Can;Bayraktar, Alemdar;Sevim, Baris
    • Computers and Concrete
    • /
    • v.12 no.6
    • /
    • pp.803-818
    • /
    • 2013
  • In this study, analytical and experimental modal analyses of a scaled bridge model are carried out to extract the dynamic characteristics such as natural frequency, mode shapes and damping ratios. For this purpose, a scaled bridge model is constructed in laboratory conditions. Three dimensional finite element model of the bridge is constituted and dynamic characteristics are determined, analytically. To identify the dynamic characteristics experimentally; Experimental Modal Analyses (ambient and forced vibration tests) are conducted to the bridge model. In the ambient vibration tests, natural excitations are provided and the response of the bridge model is measured. Sensitivity accelerometers are placed to collect signals from the measurements. The signals collected from the tests are processed by Operational Modal Analysis; and the dynamic characteristics of the bridge model are estimated using Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods. In the forced vibration tests, excitation of the bridge model is induced by an impact hammer and the frequency response functions are obtained. From the finite element analyses, a total of 8 natural frequencies are attained between 28.33 and 313.5 Hz. Considering the first eight mode shapes, these modes can be classified into longitudinal, transverse and vertical modes. It is seen that the dynamic characteristics obtained from the ambient and forced vibration tests are close to each other. It can be stated that the both of Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods are very useful to identify the dynamic characteristics of the bridge model. The first eight natural frequencies are obtained from experimental measurements between 25.00-299.5 Hz. In addition, the dynamic characteristics obtained from the finite element analyses have a good correlation with experimental frequencies and mode shapes. The MAC values obtained between 90-100% and 80-100% using experimental results and experimental-analytical results, respectively.

Computing input energy response of MDOF systems to actual ground motions based on modal contributions

  • Ucar, Taner
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.263-273
    • /
    • 2020
  • The use of energy concepts in seismic analysis and design of structures requires the understanding of the input energy response of multi-degree-of-freedom (MDOF) systems subjected to strong ground motions. For design purposes and non-time consuming analysis, however, it would be beneficial to associate the input energy response of MDOF systems with those of single-degree-of-freedom (SDOF) systems. In this paper, the theoretical formulation of energy input to MDOF systems is developed on the basis that only a particular portion of the total mass distributed among floor levels is effective in the nth-mode response. The input energy response histories of several reinforced concrete frames subjected to a set of eleven horizontal acceleration histories selected from actual recorded events and scaled in time domain are obtained. The contribution of the fundamental mode to the total input energy response of MDOF frames is demonstrated both graphically and numerically. The input energy of the fundamental mode is found to be a good indicator of the total energy input to two-dimensional regular MDOF structures. The numerical results computed by the proposed formulation are verified with relative input energy time histories directly computed from linear time history analysis. Finally, the elastic input energies are compared with those computed from time history analysis of nonlinear MDOF systems.

AMEX: Extending Addressing Mode of 16-bit Thumb Instruction Set Architecture (AMEX: 16비트 Thumb 명령어 집합 구조의 주소 지정 방식 확장)

  • Kim, Dae-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.11
    • /
    • pp.1-10
    • /
    • 2012
  • In this paper, the extension of the addressing mode in the 16-bit Thumb instruction set architecture is proposed to improve the performance of 16-bit Thumb code. The key idea of the proposed approach is the introduction of new addressing modes for more frequent instructions by using the saved bits from the reduction of the register fields in less frequently used instructions. The proposed approach adopts efficient addressing modes from the 32-bit ARM architecture, which is the superset of the 16-bit Thumb architecture. To speed up access to a data list, scaled register offset addressing mode and post-indexed addressing mode are introduced for load and store instructions. Experiments show that the proposed approach improves performance by an average of 8.5% when compared to the conventional approach.

Experimental Study on the Damping Estimation of the 5×5 Partial Fuel Assembly (5×5 부분핵연료 집합체의 감쇠추정을 위한 실험적 연구)

  • Lee, Kang-Hee;Yoon, Kyung-Ho;Song, Kee-Nam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.2 s.107
    • /
    • pp.163-168
    • /
    • 2006
  • The PWR Nuclear Fuel assembly consists of more than 250 fuel rods that are supported by leaf springs in the cells of more than 10 Spacer Grids (SG) along the rod length. Since it is not easy to conduct mechanical tests on a full-scale model basis, the small-scaled rod bundle $(5\times5)$ which is called partial fuel assembly is generally used for various performance tests during the development stage. As one of the small-scaled tests, a flow test should be carried out in order to verify the performance of the spacer grid to obtain the Flow-Induced Vibration (FIV) characteristics of the scaled fuel assembly over the specified flow range. A vibration test should be also performed to obtain the modal parameters of the assembly prior to the flow test. In this study, we want to develop the estimation procedure of the damping ratio for the scaled test assembly. For the damping factor of the partial fuel assembly and the grid cage at the first vibration mode, as one of the vibration tests, a so-called pluck testing has been performed in air as a preliminary test prior to in-flow damping measurement test. Logarithmic decrement method is used for calculation of the damping ratio. Estimated damping ratio of the partial fuel assembly is about $0.7\%$ with reasonable error of $2\%$ for the previous results. Nonlinear behavior of the partial fuel assembly might be stem mainly from the rod-grid support configuration.