• Title/Summary/Keyword: Scaled Aircraft Model

Search Result 13, Processing Time 0.03 seconds

Damage and vibrations of nuclear power plant buildings subjected to aircraft crash part II: Numerical simulations

  • Li, Z.R.;Li, Z.C.;Dong, Z.F.;Huang, T.;Lu, Y.G.;Rong, J.L.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3085-3099
    • /
    • 2021
  • Investigations of large commercial aircraft impact effect on nuclear power plant (NPP) buildings have been drawing extensive attentions, particularly after the 9/11 event, and this paper aims to numerically assess the damage and vibrations of NPP buildings subjected to aircrafts crash. In Part I of present paper, two shots of reduce-scaled model test of aircraft impact on NPP were conducted based on the large rocket sled loading test platform. In the present part, the numerical simulations of both scaled and prototype aircraft impact on NPP buildings are further performed by adopting the commercial program LS-DYNA. Firstly, the refined finite element (FE) models of both scaled aircraft and NPP models in Part I are established, and the model impact test is numerically simulated. The validities of the adopted numerical algorithm, constitutive model and the corresponding parameters are verified based on the experimental NPP model damages and accelerations. Then, the refined simulations of prototype A380 aircraft impact on a hypothetical NPP building are further carried out. It indicates that the NPP building can totally withstand the impact of A380 at a velocity of 150 m/s, while the accompanied intensive vibrations may still lead to different levels of damage on the nuclear related equipment. Referring to the guideline NEI07-13, a maximum acceleration contour is plotted and the shock damage propagation distances under aircraft impact are assessed, which indicates that the nuclear equipment located within 11.5 m from the impact point may endure malfunction. Finally, by respectively considering the rigid and deformable impacts mainly induced by aircraft engine and fuselage, an improved Riera function is proposed to predict the impact force of aircraft A380.

A Study on Parameter Estimation for General Aviation Canard Aircraft

  • Kim, Eung Tai;Seong, Kie-Jeong;Kim, Yeong-Cheol
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.425-436
    • /
    • 2015
  • This paper presents the procedures used for estimating the stability and control derivatives of a general aviation canard aircraft from flight data. The maximum likelihood estimation method which accounts for both process and measurement noise was used for the flight data analysis of a four seat canard aircraft, the Firefly. Without relying on the parameter estimation method, several aerodynamic derivatives were obtained by analyzing the steady state flight data. A wind tunnel test, a flight test of a 1/4 scaled remotely controlled model aircraft, and the prediction of aerodynamic coefficients using the USAF Stability and Control Digital Data Compendium (DATCOM), Advanced Aircraft Analysis (AAA), and Computer Fluid Dynamics (CFD) were performed during the development phase of the Firefly and the results were compared with flight determined derivatives of a full scaled flight prototype. A correlation between the results from each method could be used for the design of the canard aircraft as well as for building the aerodynamic database.

Tethered Hover Test for Small Scaled Tilt-rotor UAV (축소형 틸트로터 무인기의 안전줄 호버 시험)

  • Park, Bum-Jin;Yoo, Chang-Sun;Chang, Sung-Ho;Choi, Seong-Wook;Koo, Sam-Ok;Kang, Young-Shin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.4
    • /
    • pp.9-16
    • /
    • 2007
  • Tilt rotor aircraft can take off and land vertically and cruise faster than any other helicopter. A scaled flight demonstration model of a tilt rotor aircraft has been developed by KARI. Because the flight characteristics of tilt rotor are not well known, the developed scaled model would be helpful to evaluate flight control algorithm of a full scale aircraft. The tethered hover test has been performed in order to improve hover flight characteristics of tilt rotor aircraft prior to flight test of the small scaled model. During the tethered hover test, the performance of rotor speed governor, rate SAS (Stability Augmentation System) and control surface mixers have been evaluated. We expect that the results of real flight hover test would be quite same as tethered hover test. Therefore the tethered hover test results will reduce the risk of flight test properly by fixing some of hidden problems which might occur during the flight test. This paper presents the results of tethered hover test in detail and shows how it could be final ground test before flight test. The control mixer gain and rate SAS feedback gains were modified in order to get higher controllability and stability during the tethered hover flight. The rotor governor showed that it could keep rotor RPM constant with very small deviation even during severe pilot collective input change. The tethered hover test results gave pilot and engineers confirmation and experience about the scheduled flight test.

  • PDF

A Study on the Measurement and the Analysis of Radar Cross Section of the Scaled Aircraft Model (축소형 항공기 모델의 레이다 단면적 분석 및 측정에 대한 연구)

  • Kim, Ki-Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1055-1060
    • /
    • 2020
  • This study is a study on the analysis and measurement of the radar cross-sectional area of a miniature aircraft. Radar cross-sectional area for miniature aircraft in advance were analyzed using an electromagnetic analysis tool, and an actual miniature aircraft was manufactured and measured in an anechoic chamber. When measuring, the old model was used as reference data for RCS(radar cross section) characteristics and applied to the test result data of the actual reduced model. The measurement method improved the accuracy of the measurement by applying time gating to remove the influence on the components scattered inside the anechoic chamber. The RCS test results of the reduced model showed relatively high RCS characteristics in the microwave band, as the previous analysis results. In the future, we plan to utilize the method of RCS analysis and measurement for the target of the radar in the VHF(Very High Frequency)/UHF(Ultra High Frequency) band with a relatively large wavelength.

Damage and vibrations of nuclear power plant buildings subjected to aircraft crash part I: Model test

  • Li, Z.R.;Li, Z.C.;Dong, Z.F.;Huang, T.;Lu, Y.G.;Rong, J.L.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3068-3084
    • /
    • 2021
  • Investigations of large commercial aircraft impact effect on nuclear power plant (NPP) buildings have been drawing extensive attentions, particularly after the 9/11 event, and this paper aims to experimentally assess the damage and vibrations of NPP buildings subjected to aircraft crash. In present Part I, two shots of reduce-scaled model test of aircraft impacting on NPP building were carried out. Firstly, the 1:15 aircraft model (weighs 135 kg) and RC NPP model (weighs about 70 t) are designed and prepared. Then, based on the large rocket sled loading test platform, the aircraft models were accelerated to impact perpendicularly on the two sides of NPP model, i.e., containment and auxiliary buildings, with a velocity of about 170 m/s. The strain-time histories of rebars within the impact area and acceleration-time histories of each floor of NPP model are derived from the pre-arranged twenty-one strain gauges and twenty tri-axial accelerometers, and the whole impact processes were recorded by three high-speed cameras. The local penetration and perforation failure modes occurred respectively in the collision scenarios of containment and auxiliary buildings, and some suggestions for the NPP design are given. The maximum acceleration in the 1:15 scaled tests is 1785.73 g, and thus the corresponding maximum resultant acceleration in a prototype impact might be about 119 g, which poses a potential threat to the nuclear equipment. Furthermore, it was found that the nonlinear decrease of vibrations along the height was well reflected by the variations of both the maximum resultant vibrations and Cumulative Absolute Velocity (CAV). The present experimental work on the damage and dynamic responses of NPP structure under aircraft impact is firstly presented, which could provide a benchmark basis for further safety assessments of prototype NPP structure as well as inner systems and components against aircraft crash.

Trouble Shooting for Fully Automatic Flight Test of Small Scaled Tiltrotor UAV (축소형 틸트로터 무인기의 전자동 비행시험을 위한 문제해결과정)

  • Kang, Young-Shin;Park, Bum-Jin;Yoo, Chang-Sun;Koo, Sam-Ok;Lee, Jang-Ho
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • The ground integration test of Smart UAV has been performed according to the flight test plan. The flight test of full scaled model will be performed followed by 4 DOF ground rig test and a tethered hover test. Smart UAV is the first indigenous tiltrotor aircraft which can fly with fast cruise speed and take off or land vertically. In order to prove the flight control law of Smart UAV, the 40% scaled airplane was developed and have been tested. During flight test of small scaled model, many unique and unexpected problems occurred. After clearing these problems, fully automatic flight test was performed successfully. The experiences about many trouble shooting and resolving the problems would be basic material to avoid the unexpected but similar flight test problems hidden behind of the full scaled Smart UAV. This paper presents the detailed procedures of trouble shootings to solve the unique problems which occurred during the flight test of small scaled tiltrotor UAV.

  • PDF

Research on the impact effect of AP1000 shield building subjected to large commercial aircraft

  • Wang, Xiuqing;Wang, Dayang;Zhang, Yongshan;Wu, Chenqing
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1686-1704
    • /
    • 2021
  • This study addresses the numerical simulation of the shield building of an AP1000 nuclear power plant (NPP) subjected to a large commercial aircraft impact. First, a simplified finite element model (F.E. model) of the large commercial Boeing 737 MAX 8 aircraft is established. The F.E. model of the AP1000 shield building is constructed, which is a reasonably simplified reinforced concrete structure. The effectiveness of both F.E. models is verified by the classical Riera method and the impact test of a 1/7.5 scaled GE-J79 engine model. Then, based on the verified F.E. models, the entire impact process of the aircraft on the shield building is simulated by the missile-target interaction method (coupled method) and by the ANSYS/LS-DYNA software, which is at different initial impact velocities and impact heights. Finally, the laws and characteristics of the aircraft impact force, residual velocity, kinetic energy, concrete damage, axial reinforcement stress, and perforated size are analyzed in detail. The results show that all of them increase with the addition to the initial impact velocity. The first four are not very sensitive to the impact height. The engine impact mainly contributes to the peak impact force, and the peak impact force is six times higher than that in the first stage. With increasing initial impact velocity, the maximum aircraft impact force rises linearly. The range of the tension and pressure of the reinforcement axial stress changes with the impact height. The perforated size increases with increasing impact height. The radial perforation area is almost insensitive to the initial impact velocity and impact height. The research of this study can provide help for engineers in designing AP1000 shield buildings.

Safety assessment of Generation III nuclear power plant buildings subjected to commercial aircraft crash Part I: FE model establishment and validations

  • Liu, X.;Wu, H.;Qu, Y.G.;Xu, Z.Y.;Sheng, J.H.;Fang, Q.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.381-396
    • /
    • 2020
  • Investigations of the commercial aircraft impact effect on nuclear island infrastructures have been drawing extensive attention, and this paper aims to perform the safety assessment of Generation III nuclear power plant (NPP) buildings subjected to typical commercial aircrafts crash. At present Part I, finite element (FE) models establishment and validations for both the aircrafts and NPP buildings are performed. (i) Airbus A320 and A380 aircrafts are selected as the representative medium and large commercial aircrafts, and the corresponding fine FE models including the skin, beam, fuel and etc. are established. By comparing the numerically derived impact force time-histories with the existing published literatures, the rationality of aircrafts models is verified. (ii) Fine FE model of the Chinese Zhejiang Sanao NPP buildings is established, including the detailed structures and reinforcing arrangement of both the containment and auxiliary buildings. (iii) By numerically reproducing the existing 1/7.5 scaled aircraft model impact tests on steel plate reinforced concrete (SC) panels and assessing the impact process and velocity time-history of aircraft model, as well as the damage and the maximum deflection of SC panels, the applicability of the existing three concrete constitutive models (i.e., K&C, Winfrith and CSC) are evaluated and the superiority of Winfrith model for SC panels under deformable missile impact is verified. The present work can provide beneficial reference for the integral aircraft crash analyses and structural damage assessment in the following two parts of this paper.

Design of Control Mixer for 40% Scaled Smart UAV (스마트무인기 축소모형의 조종면 혼합기 설계)

  • Gang, Yeong-Sin;Park, Beom-Jin;Yu, Chang-Seon
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.240-247
    • /
    • 2006
  • Tilt rotor aircraft is a multi-configuration airplane which has three independent flight modes; helicopter, conversion, and aiplane. The control surface mixer resign is reqctired to generate and distribute efficient control forces and moments in each flight mode. In the conversion mode, the thrust vector is changed from helicopter mode to airplane, therefore the thrust vector makes undesired forces and moments which affect on pitch, roll and yaw dynamics. This paper describes the design results of control surface mixer design which minimize the undesired forces and moments due to nacelles tilting angle change for 4O% scaled model.

  • PDF

Design and Test of an Assembly of Air Intake and Variable Geometry Inertial Separator for a Turboprop Aircraft (터보프롭 항공기용 흡입구 덕트 및 가변형 관성분리기 조립체 설계 및 시험)

  • Kim, Woncheol;Oh, Seonghwan;Lee, Sanghyo;Park, Jonghwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.9
    • /
    • pp.714-719
    • /
    • 2013
  • A turboprop aircraft for this study is required to operate at icing condition in order that it performs its given mission. So an air intake system of the turboprop aircraft should be designed and verified not only to provide the maximum possible total pressure at engine inlet at normal flight condition, but also to include an inertial separator which protects Foreign Object Debris (FOD) like ice or snow at icing condition from entering into the engine inlet screen which can cause or lead an catastrophic engine failure like engine flame-out or severe damage. So an air intake assembly incorporating a variable geometry inertial separator has been designed and then CFD/structural analysis for the assembly was performed to see its design results. Then 35% scaled model of the air intake assembly was manufactured and wind tunnel test was done. This paper describes the detailed design results for the aerodynamic design, analysis and wind tunnel testing during the development process of the air intake assembly.