• Title/Summary/Keyword: Scale-up

Search Result 4,592, Processing Time 0.033 seconds

Optimal Criterion for the Scale-Up Production of Schizophyllan in the Stirred Tank Reactor

  • KWAK, JUNG-KI;KOO, JAE-GUEN;PARK, SUNG-WOO;CHO, MAN-GI;KANG, BYEONG-CHUL;RAINER BUCHHOLZ;PETER GOETZ
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • Optimal criterion for the scale-up production of schizophyllan, a fungal polysaccharide secreted by Schizophyllum commune, was investigated. For the production of the polysaccharide in a 150-l bioreactor, the culture conditions optimized in a 15-l bioreactor were applied to a 150-l bioreactor with scale-up process, by changing impeller speed and airflow rate. The optimized impeller speed in the 15-l bioreactor was 50 rpm in a technical medium based on barley. For establishment of the scale-up process, 3 kinds of criteria were used while the gas throughput number was kept constant, as follows; constant volume-related power input, constant tip speed of stirrer, and constant Reynolds number. In the 150-l bioreactor, the highest values for the maximum specific growth rate (1.17/day) and productivity (0.63 g/L${\cdot}$day) were achieved in the culture condition from constant volumerelated power input criterion.

The Heat Transfer Characteristics Analysis of Rotary Kiln for Scale Up (로터리 킬른 스케일 업을 위한 열전달 특성 고찰)

  • Eum, Minje;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.97-98
    • /
    • 2012
  • The rotary kiln is one of the most widely used industrial reactors for contacting gases and solids. Kilns are mainly used for drying, calcining and reducing solid materials. In an indirected fired rotary kiln, heat is supplied to the outside of the kiln wall. Heat transfer in indirected fired rotary kilns encompasses all the modes of transport mechanisms, that is, conduction, convection and radiation. This paper deal with the heat transfer characteristics of indirect fired rotary kiln for scale up.

  • PDF

Scale-up of Melting Chamber for a Pyrolysis Melting Incinemtion System (폐기물 열분해/용융 소각 시스템의 용융로 Scale-up 연구)

  • Yang, Won;Kim, Bong-Keun;Yu, Tae-U;Jeun, Keum-Ha
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.168-175
    • /
    • 2007
  • Ash melting chamber is one of the key facility of the pyrolysis-melting incineration system, and it should be designed and operated very carefully for avoiding solidification of slag. In this study, an example of numerical and experimental scale-up process of the melting chamber, in which high speed air is injected to the molten slag and generates bubbles, which enhances agitation of the slag and char combustion, is presented. Cold flow test, combustion and melting test in a lab-scale (30 kg/hr) chamber and a pilot scale (200 kg/hr) chamber. Minimum energy for maintaining molten slag is derived, and it was found that the molten slag can be maintained efficiently by concentrating heat into the bubbling slag.

  • PDF

Performance test of scale-up $20Nm^3/hr$ scale hydrogen generator for hydrogen station (수소스테이션용 $20Nm^3/hr$급 수소제조장치 스케일-업 및 성능시험)

  • Oh, Young-Sang;Baek, Young-Soon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.37-42
    • /
    • 2006
  • In this study, $20Nm^3/hr$ scale compact hydrogen generator which can be apply to the hydrogen station was tested for hydrogen station application. $20Nm^3/hr$ scale compact hydrogen generator was developed by upgrading concept of stacking plate reactor from former $20Nm^3/hr$ scale plate hydrogen generator. concepts for improving system efficiency and performance include such as idea of heat recovery from the exhaust, exhaust duct which is especially design for plate type reactor reinforcement of insulation, enlargement of heat exchange area of reactor, introduction of desulphurizer reactor and PROX rector in a compact design, introduction of back fire protection structure of plate burner and so on, We can learn that final prototype of scale-up $20Nm^3/hr$ scale compact hydrogen generator can be operated steadily in 100% road at which over 94% of methane conversion(S/C=3.75) was obtained. In case of making up the weak point, we expect that it is possible to apply to hydrogen station by way of showing an example.

  • PDF

Analysis on the fuel concentration distribution in a fluidized bed for the scale-up of a FBC (유동층 연소로의 스케일-업을 위한 유동층 내 연료농도분포 해석)

  • Lee, Dong-U;Park, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.747-757
    • /
    • 1997
  • A numerical investigation of the fuel concentration field in a fluidized bed has been carried out for the scale-up of a fluidized bed combustor (FBC). A two-dimensional transient model is developed using the two-phase fluidization, a simple chemical reaction, and lateral solid mixing theories. The uniformity of fuel concentration distributions is controlled by the location and the number of fuel feeders, fluidizing velocities and the bed-heights. While larger bubbles owing to greater fluidizing velocities enhance the fuel-dispersion in the bed, they have adverse effects on fuel combustion and thus result in the increase of fuel concentration, since a greater bubble means a larger bypass which reduces gas-exchange rates between bubble and emulsion phases. Average or maximum values of the bed fuel concentration are utilized as criteria for the scale-up from a pilot/lab-scale to a commercial-size bed.

Comparative Daylighting Performance Analysis of Offices in 1/10, 1/5 Scale Models and Mock-up Model (실물대모형 및 1/5, 1/10축소모형의 자연채광 성능평가에 관한 비교분석)

  • Baik, Seung Heon;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.6 no.4
    • /
    • pp.25-32
    • /
    • 2006
  • Mock-up model can be applied to measure accurate performance data but difficult to apply the variables in experiment. There can be a slight experiment errors in Scale model, but various parameters can be applied for a objective experiment. This paper aims to compare the daylighting performance in 1, 1/5, 1/10 scale model of offices and analyze the experiment errors to certificate the influence of model experiment. To analyse daylighting performance, a comparison of a Mock-up model, sized $12.0m(w){\times}7.2m(l){\times}3.7m(h)$, designed for experimentation of daylighting systems and its 1:5, 1:10 scale model. It has an identical configuration of reference room and the test room. For the test room, the lightshelf system was designed as Micro-4 reflective material. To assess work plane illuminance and light factor, photometric sensors of each room were installed at work-plane(6 points) and exterior horizontal illuminance (1 point). And luminance of window, rare of the room was measured under clear sky. It is to be monitored by Agilent data logger, photometric sensor Li-cor and the Radiant Imaging ProMetric 1400. Comparisons with a light factor, increase-decrease ratio and luminance are discussed.