• Title/Summary/Keyword: Scale-free

Search Result 1,138, Processing Time 0.024 seconds

Vibration analysis of FG reinforced porous nanobeams using two variables trigonometric shear deformation theory

  • Messai, Abderraouf;Fortas, Lahcene;Merzouki, Tarek;Houari, Mohammed Sid Ahmed
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.461-479
    • /
    • 2022
  • A finite element method analysis framework is introduced for the free vibration analyses of functionally graded porous beam structures by employing two variables trigonometric shear deformation theory. Both Young's modulus and material density of the FGP beam element are simultaneously considered as grading through the thickness of the beam. The finite element approach is developed using a nonlocal strain gradient theory. The governing equations derived here are solved introducing a 3-nodes beam element. A comprehensive parametric study is carried out, with a particular focus on the effects of various structural parameters such as the dispersion patterns of GPL reinforcements and porosity, thickness ratio, boundary conditions, nonlocal scale parameter and strain gradient parameters. The results indicate that porosity distribution and GPL pattern have significant effects on the response of the nanocomposite beams.

Study on the Behavior Characteristics of the Evaporative Diesel Spray under Change in Ambient Conditions (주위조건 변화에 대한 증발 디젤분무 거동특성 연구)

  • Yeom, Jeong-Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.6
    • /
    • pp.454-460
    • /
    • 2009
  • To analyze the mixture formation process of evaporating diesel spray is important for emissions reduction in actual engines. Then the effects of change in density of ambient gas on spray structure in high temperature and pressure field have been investigated in this study. The ambient gas density was changed from ${\rho}_a=5.0kg/m^3$ to ${\rho}_a=12.3kg/m^3$ with CVC(Constant Volume Chamber). Also, simulation study by modified KIVA-II code was conducted and compared with experimental results. The ambient temperature and injection pressure are kept as 700K and 72MPa, respectively. The images of liquid and vapor phase in the evaporating free spray were simultaneously taken by exciplex fluorescence method. As experimental results, with increasing ambient gas density, the tip penetration of the evaporating free spray decreases due to the increase in the drag force from ambient gas. The spatial structure of a diesel spray can be verified as 2-regions consisted of liquid with momentum decrease and vapor with large-scale vortex. The calculated results obtained by modified KIVA-II code show good agreements with experimental results.

A Study on Measurement Techniques of EM Wave Absorbing Ability of a RAM for RF Stealth (RF 스텔스용 RAM의 전파흡수능 측정기법에 관한 연구)

  • Choi, Chang-Mook;Lim, Bong-Taeck;Ko, Kwang-Soob
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.6
    • /
    • pp.1331-1337
    • /
    • 2010
  • In this paper, measurement techniques of absorbing ability for a RAM were studied for RCS Reduction needed for materializing ADD's RF stealth. As for the measurement techniques of absorbing ability, the theories of the free space method, similar to real radar system, and transmission line method, suitable for lab scale, were established. And we made real RAM samples, measured absorbing ability according to each, and compared the results. After comparison, electromagnetic(EM) wave absorbing ability was measured to be somewhat superior in free space method and overall uniform pattern was observed. Therefore, by applying measurement techniques by stage and by frequency we could develop RAM in a more efficient way.

Discrete-vortex Simulation of Turbulent Separation Bubble Excited by Acoustic Perturbatioons (음향교란을 받는 난류박리기포의 이산와류 수치해석)

  • 임재욱;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.775-786
    • /
    • 1992
  • Studies are made of the turbulent separation bubble in a two-dimensional semi-infinite blunt plate aligned to a uniform free stream when the oncoming free stream contains a pulsating component. The discrete-vortex method is applied to simulate this flow situations because this approach is effective to represent the unsteady motions of turbulent shear layer and the effect of viscosity near the solid surface. The two key external paramenters in the free stream, i.e., the amplitude of pulsation, A, and the frequency parameter St[=fH/ $U_{1}$], are dealt with in the present numerical computations, A particular frequency gives a minimum reattachment which is related to the drag reduction and the most effective frequency is dependent on the most amplified shedding frequency. The turbulent flow structure is scrutinized. A comparison between the unperturbed flow and the perturbed at the particular frequency of the minimum reattachment length of the separation bubble suggests that the large-scale structure is associated with the shedding frequency and the flow instabilities.

Debonding monitoring of CFRP strengthened RC beams using active sensing and infrared imaging

  • Sohn, Hoon;Kim, Seung Dae;In, Chi Won;Cronin, Kelly E.;Harries, Kent
    • Smart Structures and Systems
    • /
    • v.4 no.4
    • /
    • pp.391-406
    • /
    • 2008
  • This study attempts to develop a real-time debonding monitoring system for carbon fiber-reinforced polymer (CFRP) strengthened structures by continuously inspecting the bonding condition between the CFRP layer and the host structure. The uniqueness of this study is in developing a new concept and theoretical framework of nondestructive testing (NDT), in which debonding is detected without relying on previously-obtained baseline data. The proposed reference-free damage diagnosis is achieved based on the concept of time reversal acoustics (TRA). In TRA, an input signal at an excitation point can be reconstructed if the response signal measured at another point is reemitted to the original excitation point after being reversed in the time domain. Examining the deviation of the reconstructed signal from the known initial input signal allows instantaneous identification of damage without requiring a baseline signal representing the undamaged state for comparison. The concept of TRA has been extended to guided wave propagations within the CFRP-strengthened reinforced concrete (RC) beams to improve the detectibility of local debonding. Monotonic and fatigue load tests of large-scale CFRP-strengthened RC beams are conducted to demonstrate the potential of the proposed reference-free debonding monitoring system. Comparisons with an electro-mechanical impedance method and an inferred imaging technique are provided as well.

Semi-analytical vibration analysis of functionally graded size-dependent nanobeams with various boundary conditions

  • Ebrahimi, Farzad;Salari, Erfan
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.243-257
    • /
    • 2017
  • In this paper, free vibration of functionally graded (FG) size-dependent nanobeams is studied within the framework of nonlocal Timoshenko beam model. It is assumed that material properties of the FG nanobeam, vary continuously through the thickness according to a power-law form. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The non-classical governing differential equations of motion are derived through Hamilton's principle and they are solved utilizing both Navier-based analytical method and an efficient and semi-analytical technique called differential transformation method (DTM). Various types of boundary conditions such as simply-supported, clamped-clamped, clamped-simply and clamped-free are assumed for edge supports. The good agreement between the presented DTM and analytical results of this article and those available in the literature validated the presented approach. It is demonstrated that the DTM has high precision and computational efficiency in the vibration analysis of FG nanobeams. The obtained results show the significance of the material graduation, nonlocal effect, slenderness ratio and boundary conditions on the vibration characteristics of FG nanobeams.

Vibration analysis of micro composite thin beam based on modified couple stress

  • Ehyaei, Javad;Akbarizadeh, M. Reza
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.403-411
    • /
    • 2017
  • In this article, analytical solution for free vibration of micro composite laminated beam on elastic medium based on modified couple stress are presented. The surrounding elastic medium is modeled as the Winkler elastic foundation. The governing equations and boundary conditions are obtained by using the principle of minimum potential energy for EulerBernoulli beam. For investigating the effect of different parameters including material length scale, beam thickness, some numerical results on different cross ply laminated beams such as (90,0,90), (0,90,0), (90,90,90) and (0,0,0) are presented on elastic medium. Free vibration analysis of a simply supported beam is considered utilizing the Fourier series. Also, the fundamental frequency is obtained using the principle of Hamilton for four types of cross ply laminations with hinged-hinged boundary conditions and different beam theories. The fundamental frequency for different thin beam theories are investigated by increasing the slenderness ratio and various foundation coefficients. The results prove that the modified couple stress theory increases the natural frequency under the various foundation for free vibration of composite laminated micro beams.

Numerical approach on relationship between deformation of artificial crack and stress acting on tunnel shotcrete lining (인공균열 주위의 변형과 터널 숏크리트 라이닝 응력간의 상관관계에 대한 수치해석적 검토)

  • Shin, Hyu-Soung;Kwon, Young-Cheul;Bae, Gyu-Jin;Kim, Kyung-Shin;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.64-71
    • /
    • 2009
  • The stresses acting on shotcrete lining of tunnel have been measured virtually by monitoring instruments installed during construction. However, the malfunction of instrument and the lack of consistency of signal have always been controversial, but re-installation of instrument after construction of tunnel lining is practically impossible. Therefore, authors have carried out the study to develop a new technique for estimating the stress acting on shotcrete lining during and after construction. In the technique, stresses of shotcrete lining can be estimate by the measurement of deformation of free face. Therefore, the relationships between the stresses of shotcrete lining and deformation of free surface are indispensable factor. In this paper, the parametric study using 2D FEM analysis was carried out to estimate the relationships between the stress level acting on the tunnel shotcrete lining and the deformation near the free face (e.g. artificial crack in this study). The distribution of stresses of shotcrete lining is also investigated in this study as the preliminary investigation for the large-scale tunnel lining test and detailed 3D FEM analysis.

  • PDF

Development of Profilometry based on a Curvature Measurement (곡률에 근거한 형상 측정기술 개발)

  • Kim, Byoung-Chang
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.2
    • /
    • pp.130-134
    • /
    • 2007
  • I present a novel curvature profilometer devised fur the profile measurement of aspheric and free-form surfaces on the nanometer scale. A profile is reconstructed from measuring the curvature of a test part of the surface at several locations along a line. For profile measurement of free-farm surfaces, methods based on local part curvature sensing have strong appeal. Unlike full-aperture interferometry they do not require customized null optics. The measurement accuracy of the curvature profilometer was assessed by comparison with a well-calibrated interferometer in NIST. Experimental results prove that the maximum discrepancy turns out to be 37 nm on the 28 mm measurement range for the spherical mirror.

The Comparison of Demand Forecasting and Development Schemes for Saemangeum New Port (새만금 신항만의 수요추정 비교분석 및 개발방안)

  • Jo, Jin-Haeng;Kim, Jae-Jin
    • Journal of Korea Port Economic Association
    • /
    • v.27 no.4
    • /
    • pp.219-235
    • /
    • 2011
  • Today FTAs(Free Trade Agreements) are revving up among countries in the course of glocalization. Dubai, Pudong of Shanghai, Binhai shinku of Tianjin are actively pursuing Free Zones, and Saemangeum District in Korea is under development as growth base in North East Asia. This study aims to present the proper development scale and other development schemes for Samangeum Newport. In conclusion, following several schemes are required; firstly more sophisticated forecasting of demand and supplementation for Saemangeum Newport, secondly development of dedicated container terminals and dedicated food terminals, and finally cruise terminal for the tourist activation.