• Title/Summary/Keyword: Scale-free

Search Result 1,127, Processing Time 0.035 seconds

Numerical prediction analysis of propeller bearing force for full-scale hull-propeller-rudder system

  • Wang, Chao;Sun, Shuai;Li, Liang;Ye, Liyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.6
    • /
    • pp.589-601
    • /
    • 2016
  • The hybrid grid was adopted and numerical prediction analysis of propeller unsteady bearing force considering free surface was performed for mode and full-scale KCS hull-propeller-rudder system by employing RANS method and VOF model. In order to obtain the propeller velocity under self-propulsion point, firstly, the numerical simulation for self-propulsion test of full-scale ship is carried out. The results show that the scale effect of velocity at self-propulsion point and wake fraction is obvious. Then, the transient two-phase flow calculations are performed for model and full-scale KCS hull-propeller-rudder systems. According to the monitoring data, it is found that the propeller unsteady bearing force is fluctuating periodically over time and full-scale propeller's time-average value is smaller than model-scale's. The frequency spectrum curves are also provided after fast Fourier transform. By analyzing the frequency spectrum data, it is easy to summarize that each component of the propeller bearing force have the same fluctuation frequency and the peak in BFP is maximum. What's more, each component of full-scale bearing force's fluctuation value is bigger than model-scale's except the bending moment coefficient about the Y-axis.

Transfer-Free, Large-Scale, High-Quality Monolayer Graphene Grown Directly onto the Ti (10 nm)-buffered Substrates at Low Temperatures (Ti (10 nm)-buffered 기판들 위에 저온에서 직접 성장된 무 전사, 대 면적, 고 품질 단층 그래핀 특성)

  • Han, Yire;Park, Byeong-Ju;Eom, Ji-Ho;Yoon, Soon-Gil
    • Korean Journal of Materials Research
    • /
    • v.30 no.3
    • /
    • pp.142-148
    • /
    • 2020
  • Graphene has attracted the interest of many researchers due to various its advantages such as high mobility, high transparency, and strong mechanical strength. However, large-area graphene is grown at high temperatures of about 1,000 ℃ and must be transferred to various substrates for various applications. As a result, transferred graphene shows many defects such as wrinkles/ripples and cracks that happen during the transfer process. In this study, we address transfer-free, large-scale, and high-quality monolayer graphene. Monolayer graphene was grown at low temperatures on Ti (10nm)-buffered Si (001) and PET substrates via plasma-assisted thermal chemical vapor deposition (PATCVD). The graphene area is small at low mTorr range of operating pressure, while 4 × 4 ㎠ scale graphene is grown at high working pressures from 1.5 to 1.8 Torr. Four-inch wafer scale graphene growth is achieved at growth conditions of 1.8 Torr working pressure and 150 ℃ growth temperature. The monolayer graphene that is grown directly on the Ti-buffer layer reveals a transparency of 97.4 % at a wavelength of 550 nm, a carrier mobility of about 7,000 ㎠/V×s, and a sheet resistance of 98 W/□. Transfer-free, large-scale, high-quality monolayer graphene can be applied to flexible and stretchable electronic devices.

Free vibration analysis Silicon nanowires surrounded by elastic matrix by nonlocal finite element method

  • Uzun, Busra;Civalek, Omer
    • Advances in nano research
    • /
    • v.7 no.2
    • /
    • pp.99-108
    • /
    • 2019
  • Higher-order theories are very important to investigate the mechanical properties and behaviors of nanoscale structures. In this study, a free vibration behavior of SiNW resting on elastic foundation is investigated via Eringen's nonlocal elasticity theory. Silicon Nanowire (SiNW) is modeled as simply supported both ends and clamped-free Euler-Bernoulli beam. Pasternak two-parameter elastic foundation model is used as foundation. Finite element formulation is obtained nonlocal Euler-Bernoulli beam theory. First, shape function of the Euler-Bernoulli beam is gained and then Galerkin weighted residual method is applied to the governing equations to obtain the stiffness and mass matrices including the foundation parameters and small scale parameter. Frequency values of SiNW is examined according to foundation and small scale parameters and the results are given by tables and graphs. The effects of small scale parameter, boundary conditions, foundation parameters on frequencies are investigated.

A Graph Layout Algorithm for Scale-free Network (척도 없는 네트워크를 위한 그래프 레이아웃 알고리즘)

  • Cho, Yong-Man;Kang, Tae-Won
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.5_6
    • /
    • pp.202-213
    • /
    • 2007
  • A network is an important model widely used in natural and social science as well as engineering. To analyze these networks easily it is necessary that we should layout the features of networks visually. These Graph-Layout researches have been performed recently according to the development of the computer technology. Among them, the Scale-free Network that stands out in these days is widely used in analyzing and understanding the complicated situations in various fields. The Scale-free Network is featured in two points. The first, the number of link(Degree) shows the Power-function distribution. The second, the network has the hub that has multiple links. Consequently, it is important for us to represent the hub visually in Scale-free Network but the existing Graph-layout algorithms only represent clusters for the present. Therefor in this thesis we suggest Graph-layout algorithm that effectively presents the Scale-free network. The Hubity(hub+ity) repulsive force between hubs in suggested algorithm in this thesis is in inverse proportion to the distance, and if the degree of hubs increases in a times the Hubity repulsive force between hubs is ${\alpha}^{\gamma}$ times (${\gamma}$??is a connection line index). Also, if the algorithm has the counter that controls the force in proportion to the total node number and the total link number, The Hubity repulsive force is independent of the scale of a network. The proposed algorithm is compared with Graph-layout algorithm through an experiment. The experimental process is as follows: First of all, make out the hub that exists in the network or not. Check out the connection line index to recognize the existence of hub, and then if the value of connection line index is between 2 and 3, then conclude the Scale-free network that has a hub. And then use the suggested algorithm. In result, We validated that the proposed Graph-layout algorithm showed the Scale-free network more effectively than the existing cluster-centered algorithms[Noack, etc.].

Endwall Heat (Mass) Transfer in a Turbine Cascade Under Combustor-Level High Free-Stream Turbulence (연소기 출구 난류 상태에서의 터빈 익열 끝벽 열(물질)전달 특성)

  • Jun, Sang-Bae;Lee, Sang-Woo;Park, Byung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.759-764
    • /
    • 2001
  • Heat (mass) transfer characteristics have been investigated on the endwall of a large-scale linear turbine cascade passage under a combustor-level high free-stream turbulence with a large length scale. Local heat (mass) transfer coefficients are measured by using the naphthalene sublimation technique. The result shows that local heat (mass) transfer on the endwall is greatly enhanced in the central region of the turbine passage, but there is no noticeable change in the local heat (mass) transfer in the region suffering severe heat load. Under the high free-stream turbulence, the local heat (mass) transfer coefficient shows more uniform distribution and its average value across the whole endwall region is increased by 26% of that at low turbulence condition. The heat (mass) transfer data on the endwall strongly supports that well-organized vortices near the endwall tends to suffer an suppression by the high free-stream turbulence.

  • PDF

Free vibrations analysis of arbitrary three-dimensionally FGM nanoplates

  • Dehshahri, Kasra;Nejad, Mohammad Zamani;Ziaee, Sima;Niknejad, Abbas;Hadi, Amin
    • Advances in nano research
    • /
    • v.8 no.2
    • /
    • pp.115-134
    • /
    • 2020
  • In this paper, the free vibrations analysis of the nanoplates made of three-directional functionally graded material (TDFGM) with small scale effects is presented. To study the small-scale effects on natural frequency, modified strain gradient theory (MSGT) has been used. Material properties of the nanoplate follow an arbitrary function that changes in three directions along the length, width and thickness of the plate. The equilibrium equations and boundary conditions of nanoplate are obtained using the Hamilton's principle. The generalized differential quadrature method (GDQM) is used to solve the governing equations and different boundary conditions for obtaining the natural frequency of nanoplate made of three-directional functionally graded material. The present model can be transformed into a couple stress plate model or a classic plate model if two or all parameters of the length scales set to zero. Finally, numerical results are presented to study the small-scale effect and heterogeneity constants and the aspect ratio with different boundary conditions on the free vibrations of nanoplates. To the best of the researchers' knowledge, in the literature, there is no study carried out into MSGT for free vibration analysis of FGM nanoplate with arbitrary functions.

Parallel finite element simulation of free surface flows using Taylor-Galerkin/level-set method (Taylor-Galerkin/level-set 방법을 이용한 자유 표면의 병렬 유한 요소 해석)

  • Ahn, Young-Kyoo;Choi, Hyoung-Gwon;Cho, Myung-Hwan;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2558-2561
    • /
    • 2008
  • In the present study, a parallel Taylor-Galerkin/level set based two-phase flow code was developed using finite element discretization and domain decomposition method based on MPI (Message Passing Interface). The proposed method can be utilized for the analysis of a large scale free surface problem in a complex geometry due to the feature of FEM and domain decomposition method. Four-step fractional step method was used for the solution of the incompressible Navier-Stokes equations and Taylor-Galerkin method was adopted for the discretization of hyperbolic type redistancing and advection equations. A Parallel ILU(0) type preconditioner was chosen to accelerate the convergence of a conjugate gradient type iterative solvers. From the present parallel numerical experiments, it has been shown that the proposed method is applicable to the simulation of large scale free surface flows.

  • PDF

Nonlinear dynamic responses of cracked atomic force microscopes

  • Alimoradzadeh, M.;Akbas, S.D.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.747-756
    • /
    • 2022
  • This study presents the nonlinear free and forced vibrations of a cracked atomic force microscopy (AFM) cantilever by using the modified couple stress. The cracked section of the AFM cantilever is considered and modeled as rotational spring. In the frame work of Euler-Bernoulli beam theory, Von-Karman type of geometric nonlinear equation and the modified couple stress theory, the nonlinear equation of motion for the cracked AFM is derived by Hamilton's principle and then discretized by using the Galerkin's method. The semi-inverse method is utilized for analysis nonlinear free oscillation of the system. Then the method of multiple scale is employed to investigate primary resonance of the system. Some numerical examples are presented to illustrate the effects of some parameters such as depth of the crack, length scale parameter, Tip-Mass, the magnitude and the location of the external excitation force on the nonlinear free and forced vibration behavior of the system.

Modelling of graded rectangular micro-plates with variable length scale parameters

  • Aghazadeh, Reza;Dag, Serkan;Cigeroglu, Ender
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.573-585
    • /
    • 2018
  • This article presents strain gradient elasticity-based procedures for static bending, free vibration and buckling analyses of functionally graded rectangular micro-plates. The developed method allows consideration of smooth spatial variations of length scale parameters of strain gradient elasticity. Governing partial differential equations and boundary conditions are derived by following the variational approach and applying Hamilton's principle. Displacement field is expressed in a unified way to produce numerical results in accordance with Kirchhoff, Mindlin, and third order shear deformation theories. All material properties, including the length scale parameters, are assumed to be functions of the plate thickness coordinate in the derivations. Developed equations are solved numerically by means of differential quadrature method. Proposed procedures are verified through comparisons made to the results available in the literature for certain limiting cases. Further numerical results are provided to illustrate the effects of material and geometric parameters on bending, free vibrations, and buckling. The results generated by Kirchhoff and third order shear deformation theories are in very good agreement, whereas Mindlin plate theory slightly overestimates static deflection and underestimates natural frequency. A rise in the length scale parameter ratio, which identifies the degree of spatial variations, leads to a drop in dimensionless maximum deflection, and increases in dimensionless vibration frequency and buckling load. Size effect is shown to play a more significant role as the plate thickness becomes smaller compared to the length scale parameter. Numerical results indicate that consideration of length scale parameter variation is required for accurate modelling of graded rectangular micro-plates.

An Experimental Study on the Manoeuvrability of KCS with Different Scale Ratios by Free Running Model Test (자유항주모형시험을 이용한 KCS 선형의 축척비별 조종성능에 관한 연구)

  • Yun, Kunhang;Choi, Hujae;Kim, Dong Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.6
    • /
    • pp.415-423
    • /
    • 2021
  • There have been many experimental studies on the manoeuvrability of KRISO Container Ship (KCS). However, the scale ratio of the model ship and the test procedure for each institute are slightly different, so direct comparison for the data is technically difficult to perform. This paper presents the manoeuvrability of the ship with different scale ratios: 1/65.8, 1/42.0, and 1/31.6 in model scale. KRISO conducted Free Running Model Tests (FRMT): 35° turning circle tests and 20/20(10/10) zigzag manoeuvring tests. The test results indicated that advance and tactical diameter in turning circle tests were similar, and overshoot angles in two zigzag manoeuvring tests increased as the model ship size increased. In addition, a basic concept for the FRMT method with an auxiliary X-thrust device was proposed so that the scale effect could be considered in model ship tests.