• Title/Summary/Keyword: Scale-dependent modeling

Search Result 67, Processing Time 0.028 seconds

Buckling and free vibration analyses of nanobeams with surface effects via various higher-order shear deformation theories

  • Rahmani, Omid;Asemani, S. Samane
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.175-187
    • /
    • 2020
  • The theories having been developed thus far account for higher-order variation of transverse shear strain through the depth of the beam and satisfy the stress-free boundary conditions on the top and bottom surfaces of the beam. A shear correction factor, therefore, is not required. In this paper, the effect of surface on the axial buckling and free vibration of nanobeams is studied using various refined higher-order shear deformation beam theories. Furthermore, these theories have strong similarities with Euler-Bernoulli beam theory in aspects such as equations of motion, boundary conditions, and expressions of the resultant stress. The equations of motion and boundary conditions were derived from Hamilton's principle. The resultant system of ordinary differential equations was solved analytically. The effects of the nanobeam length-to-thickness ratio, thickness, and modes on the buckling and free vibration of the nanobeams were also investigated. Finally, it was found that the buckling and free vibration behavior of a nanobeam is size-dependent and that surface effects and surface energy produce significant effects by increasing the ratio of surface area to bulk at nano-scale. The results indicated that surface effects influence the buckling and free vibration performance of nanobeams and that increasing the length-to-thickness increases the buckling and free vibration in various higher-order shear deformation beam theories. This study can assist in measuring the mechanical properties of nanobeams accurately and designing nanobeam-based devices and systems.

Sensitivity studies in spent fuel pool criticality safety analysis for APR-1400 nuclear power plants

  • Al Awad, Abdulrahman S.;Habashy, Abdalla;Metwally, Walid A.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.709-716
    • /
    • 2018
  • A criticality safety analysis was performed for the APR-1400 spent fuel pool region-II to ensure the safe storage of spent fuel, with credit taken for depletion and in-rack neutron absorbers (Metamic panels). PLUS7 fuel assembly was modeled using TRITON-NEWT of SCALE-6.1. The burnup-dependent cross-section library was generated under limiting core-operating conditions with 5%-w U-235 initial enrichment. MCNP5 was used to evaluate the neutron multiplication factor in an infinite array of rack cells with the axially nonuniformly burnt PLUS7 assemblies under normal, abnormal, and accident conditions; including all biases and uncertainties. The main purpose of this study is to investigate reactivity variations due to the critical depletion and reactor operation parameters. The approach, assumptions, and modeling methods were verified by analyzing the contents of the most important fissile and the associated reactivity effects. The Nuclear Regulatory Commission (NRC) guidance on k-eff being less than 1.0 for spent fuel pools filled with unborated water was the main criterion used in this study. It was found that assemblies with 49.0 GWd/MTU and 5.0 w/o U-235 initial enrichment loaded in Region-II satisfy this criterion. Moreover, it was found that the end effect resulted in a positive bias, thus ensuring its consideration.

Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle

  • Gafour, Youcef;Hamidi, Ahmed;Benahmed, Abdelillah;Zidour, Mohamed;Bensattalah, Tayeb
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.37-47
    • /
    • 2020
  • This work focuses on the behavior of non-local shear deformation beam theory for the vibration of functionally graded (FG) nanobeams with porosities that may occur inside the functionally graded materials (FG) during their fabrication, using the non-local differential constitutive relations of Eringen. For this purpose, the developed theory accounts for the higher-order variation of transverse shear strain through the depth of the nanobeam. The material properties of the FG nanobeam are assumed to vary in the thickness direction. The equations of motion are derived from Hamilton's principle. Analytical solutions are presented for a simply supported FG nanobeam with porosities. The validity of this theory is verified by comparing some of the present results with other higher-order theories reported in the literature, the influence of material parameters, the volume fraction of porosity and the thickness ratio on the behavior mechanical P-FGM beam are represented by numerical examples.

The Technology Readiness of Thai Governmental Agency

  • TERDPAOPONG, Kanitsorn;KRAIWANIT, Tanpat
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.12
    • /
    • pp.431-441
    • /
    • 2021
  • The paper aims to analyze the factors influencing the digital technology readiness of the governmental agency in Thailand, namely the Office of the Welfare Promotion Commission for Teachers and Educational Personnel (OTEP). This paper discusses challenges regarding the technology readiness of OTEP, which is taken as a case study for Thai governmental agencies. Data is collected through questionnaires distributed from October to December 2020. With a population of 777 OTEP staff, 534 employees are the respondents of this study. The study employs correlation, multiple linear regression, and structural equation modeling to analyze the data. The dependent variable is the digital technology readiness, while the independent variables are age, technology literacy, technology experience, attitude, organizational culture, leadership, and learning facilities. One of the principal findings is that the digital technology readiness of OTEP is at a moderate level. In addition, learning facilities, technology literacy, leadership, and organizational culture are found to be statistically significant for digital technology readiness. The findings highlight the issues and obstacles associated with encouraging human resource development, notably in the field of digital technology. Adopting digital technology to give better services to a large scale of customers is challenging for most large governmental enterprises, considering OTEP as a wonderful example for organizations under government oversight.

A hybrid artificial intelligence and IOT for investigation dynamic modeling of nano-system

  • Ren, Wei;Wu, Xiaochen;Cai, Rufeng
    • Advances in nano research
    • /
    • v.13 no.2
    • /
    • pp.165-174
    • /
    • 2022
  • In the present study, a hybrid model of artificial neural network (ANN) and internet of things (IoT) is proposed to overcome the difficulties in deriving governing equations and numerical solutions of the dynamical behavior of the nano-systems. Nano-structures manifest size-dependent behavior in response to static and dynamic loadings. Nonlocal and length-scale parameters alongside with other geometrical, loading and material parameters are taken as input parameters of an ANN to observe the natural frequency and damping behavior of micro sensors made from nanocomposite material with piezoelectric layers. The behavior of a micro-beam is simulated using famous numerical methods in literature under base vibrations. The ANN was further trained to correlate the output vibrations to the base vibration. Afterwards, using IoT, the electrical potential conducted in the sensors are collected and converted to numerical data in an embedded mini-computer and transferred to a server for further calculations and decision by ANN. The ANN calculates the base vibration behavior with is crucial in mechanical systems. The speed and accuracy of the ANN in determining base excitation behavior are the strengths of this network which could be further employed by engineers and scientists.

Geometry impact on the stability behavior of cylindrical microstructures: Computer modeling and application for small-scale sport structures

  • Yunzhong Dai;Zhiyong Jiang;Kuan-yu Chen;Duquan Zuo;Mostafa habibi;H. Elhosiny Ali;Ibrahim Albaijan
    • Steel and Composite Structures
    • /
    • v.48 no.4
    • /
    • pp.443-459
    • /
    • 2023
  • This paper investigates the stability of a bi-directional functionally graded (BD-FG) cylindrical beam made of imperfect concrete, taking into account size-dependency and the effect of geometry on its stability behavior. Both buckling and dynamic behavior are analyzed using the modified coupled stress theory and the classical beam theory. The BD-FG structure is created by using porosity-dependent FG concrete, with changing porosity voids and material distributions along the pipe radius, as well as uniform and nonuniform radius functions that vary along the beam length. Energy principles are used to generate partial differential equations (PDE) for stability analysis, which are then solved numerically. This study sheds light on the complex behavior of BD-FG structures, and the results can be useful for the design of stable cylindrical microstructures.

Impulse Buying Behavior in Distribution Centers of Kathmandu

  • Bharat RAI;Rewan Kumar DAHAL;Bhupendra Jung SHAHI;Binod GHIMIRE
    • Journal of Distribution Science
    • /
    • v.21 no.5
    • /
    • pp.19-29
    • /
    • 2023
  • Purpose: The study's primary objective was to pinpoint the variables impacting consumers' impulsive purchasing decisions in the distribution centers in Kathmandu, the capital city of Nepal. Research design, data, and methodology: The independent variables used to identify consumer impulse buying behavior were the in-store displays, store employee behavior, reference groups, and promotional activities. A 6-point Likert scale questionnaire was employed for collecting the primary data from customers at the retail center of Kathmandu. The study's sample size was 396, employing a convenient sampling method. Statistical Package for the Social Sciences (SPSS) and Analysis of a Moment Structures (AMOS) have been used to show the relationships between dependent and independent variables. Results: The outcome of the path analysis using structural equation modeling demonstrates that in-store displays, reference groups, and store employees' behavior significantly influence the customers' impulse buying decisions in the distribution center. Additionally, it has been discovered that promotional activities have no significant impact on consumers' impulsive purchasing decisions made at the retail center of Kathmandu. Conclusions and Implications: The study's findings indicate that the actions of store personnel, reference groups, and in-store displays significantly contribute to the acceleration of impulsive purchases. Such findings provide researchers and business executives with a road map for the future.

A one-dimensional model for impact forces resulting from high mass, low velocity debris

  • Paczkowski, K.;Riggs, H.R.;Naito, C.J.;Lehmann, A.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.831-847
    • /
    • 2012
  • Impact from water-borne debris during tsunami and flood events pose a potential threat to structures. Debris impact forces specified by current codes and standards are based on rigid body dynamics, leading to forces that are dependent on total debris mass. However, shipping containers and other debris are unlikely to be rigid compared to the walls, columns and other structures that they impact. The application of a simple one-dimensional model to obtain impact force magnitude and duration, based on acoustic wave propagation in a flexible projectile, is explored. The focus herein is on in-air impact. Based on small-scale experiments, the applicability of the model to predict actual impact forces is investigated. The tests show that the force and duration are reasonably well represented by the simple model, but they also show how actual impact differs from the ideal model. A more detailed three-dimensional finite element model is also developed to understand more clearly the physical phenomena involved in the experimental tests. The tests and the FE results reveal important characteristics of actual impact, knowledge of which can be used to guide larger scale experiments and detailed modeling. The one-dimensional model is extended to consider water-driven debris as well. When fluid is used to propel the 1-D model, an estimate of the 'added mass' effect is possible. In this extended model the debris impact force depends on the wave propagation in the two media, and the conditions under which the fluid increases the impact force are discussed.

Hierarchical Finite-Element Modeling of SiCp/Al2124-T4 Composites with Dislocation Plasticity and Size-Dependent Failure (전위 소성과 크기 종속 파손을 고려한 SiCp/Al2124-T4 복합재의 계층적 유한요소 모델링)

  • Suh, Yeong-Sung;Kim, Yong-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.187-194
    • /
    • 2012
  • The strength of particle-reinforced metal matrix composites is, in general, known to be increased by the geometrically necessary dislocations punched around a particle that form during cooling after consolidation because of coefficient of thermal expansion (CTE) mismatch between the particle and the matrix. An additional strength increase may also be observed, since another type of geometrically necessary dislocation can be formed during extensive deformation as a result of the strain gradient plasticity due to the elastic-plastic mismatch between the particle and the matrix. In this paper, the magnitudes of these two types of dislocations are calculated based on the dislocation plasticity. The dislocations are then converted to the respective strengths and allocated hierarchically to the matrix around the particle in the axisymmetric finite-element unit cell model. The proposed method is shown to be very effective by performing finite-element strength analysis of $SiC_p$/Al2124-T4 composites that included ductile failure in the matrix and particlematrix decohesion. The predicted results for different particle sizes and volume fractions show that the length scale effect of the particle size obviously affects the strength and failure behavior of the particle-reinforced metal matrix composites.

Application case for phase III of UAM-LWR benchmark: Uncertainty propagation of thermal-hydraulic macroscopic parameters

  • Mesado, C.;Miro, R.;Verdu, G.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1626-1637
    • /
    • 2020
  • This work covers an important point of the benchmark released by the expert group on Uncertainty Analysis in Modeling of Light Water Reactors. This ambitious benchmark aims to determine the uncertainty in light water reactors systems and processes in all stages of calculation, with emphasis on multi-physics (coupled) and multi-scale simulations. The Gesellschaft für Anlagen und Reaktorsicherheit methodology is used to propagate the thermal-hydraulic uncertainty of macroscopic parameters through TRACE5.0p3/PARCSv3.0 coupled code. The main innovative points achieved in this work are i) a new thermal-hydraulic model is developed with a highly-accurate 3D core discretization plus an iterative process is presented to adjust the 3D bypass flow, ii) a control rod insertion occurrence -which data is obtained from a real PWR test- is used as a transient simulation, iii) two approaches are used for the propagation process: maximum response where the uncertainty and sensitivity analysis is performed for the maximum absolute response and index dependent where the uncertainty and sensitivity analysis is performed at each time step, and iv) RESTING MATLAB code is developed to automate the model generation process and, then, propagate the thermal-hydraulic uncertainty. The input uncertainty information is found in related literature or, if not found, defined based on expert judgment. This paper, first, presents the Gesellschaft für Anlagen und Reaktorsicherheit methodology to propagate the uncertainty in thermal-hydraulic macroscopic parameters and, then, shows the results when the methodology is applied to a PWR reactor.