• Title/Summary/Keyword: Scale dependent effect

Search Result 262, Processing Time 0.022 seconds

Free vibration analysis of FG nanoplate with poriferous imperfection in hygrothermal environment

  • Karami, Behrouz;Shahsavari, Davood;Janghorban, Maziar;Li, Li
    • Structural Engineering and Mechanics
    • /
    • v.73 no.2
    • /
    • pp.191-207
    • /
    • 2020
  • This study aims at investigating the size-dependent free vibration of porous nanoplates when exposed to hygrothermal environment and rested on Kerr foundation. Based on the modified power-law model, material properties of porous functionally graded (FG) nanoplates are supposed to change continuously along the thickness direction. The generalized nonlocal strain gradient elasticity theory incorporating three scale factors (i.e. lower- and higher-order nonlocal parameters, strain gradient length scale parameter), is employed to expand the assumption of second shear deformation theory (SSDT) for considering the small size effect on plates. The governing equations are obtained based on Hamilton's principle and then the equations are solved using an analytical method. The elastic Kerr foundation, as a highly effected foundation type, is adopted to capture the foundation effects. Three different patterns of porosity (namely, even, uneven and logarithmic-uneven porosities) are also considered to fill some gaps of porosity impact. A comparative study is given by using various structural models to show the effect of material composition, porosity distribution, temperature and moisture differences, size dependency and elastic Kerr foundation on the size-dependent free vibration of porous nanoplates. Results show a significant change in higher-order frequencies due to small scale parameters, which could be due to the size effect mechanisms. Furthermore, Porosities inside of the material properties often present a stiffness softening effect on the vibration frequency of FG nanoplates.

Dynamic Analysis of Asphalt Concrete Pavement Structure

  • 윤경구;박제선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.241-246
    • /
    • 1996
  • A new solution for the dynamic analysis of as asphalt concrete pavements under moving loads has been developed. The asphalt concrete pavement can be modeled in elastic or viscoelastic medium of multi-layered structure. The subgrade can be modeled as either a rigid base or a semi-infinite halfspace. The loads may be constant or arbitrary circular loads into one direction. The method utilizes the Complex Response Method of transient analysis with a continuum solution in the horizontal direction and a finite-element solution in the vertical direction. This proposed method incorporates such important factors as wave propagation, inertia and damping effects of the medium as well as frequency-dependent asphalt concrete properties. The proposed method has been validted with the full-scale field truck test, which was conducted on instrumented asphalt concrete section on a test track at PACCAR Technical Center in Mount Vernon, Washington. Comparison with field strain data from full-scale pavement tests has shown excellent agreement. Theoretical results have shown that the effect of vehicle speed is significant and that it is in part due to the frequency-dependent

  • PDF

Electro-mechanical vibration of nanoshells using consistent size-dependent piezoelectric theory

  • Ebrahimi, Narges;Beni, Yaghoub Tadi
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1301-1336
    • /
    • 2016
  • In this paper, the free vibrations of a short cylindrical nanotube made of piezoelectric material are studied based on the consistent couple stress theory and using the shear deformable cylindrical theory. This new model has only one length scale parameter and can consider the size effects of nanostructures in nanoscale. To model size effects in nanoscale, and considering the nanotube material which is piezoelectric, the consistent couple stress theory is used. First, using Hamilton's principle, the equations of motion and boundary condition of the piezoelectric cylindrical nanoshell are developed. Afterwards, using Navier approach and extended Kantorovich method (EKM), the governing equations of the system with simple-simple (S-S) and clamped-clamped (C-C) supports are solved. Afterwards, the effects of size parameter, geometric parameters (nanoshell length and thickness), and mechanical and electric properties (piezoelectric effect) on nanoshell vibrations are investigated. Results demonstrate that the natural frequency on nanoshell in nanoscale is extremely dependent on nanoshell size. Increase in size parameter, thickness and flexoelectric effect of the material leads to increase in frequency of vibrations. Moreover, increased nanoshell length and diameter leads to decreased vibration frequency.

Effect of non-uniform temperature distributions on nonlocal vibration and buckling of inhomogeneous size-dependent beams

  • Ebrahimi, Farzad;Salari, Erfan
    • Advances in nano research
    • /
    • v.6 no.4
    • /
    • pp.377-397
    • /
    • 2018
  • In the present investigation, thermal buckling and free vibration characteristics of functionally graded (FG) Timoshenko nanobeams subjected to nonlinear thermal loading are carried out by presenting a Navier type solution. The thermal load is assumed to be nonlinear distribution through the thickness of FG nanobeam. Thermo-mechanical properties of FG nanobeam are supposed to vary smoothly and continuously throughout the thickness based on power-law model and the material properties are assumed to be temperature-dependent. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of nanobeam. Using Hamilton's principle, the nonlocal equations of motion together with corresponding boundary conditions based on Timoshenko beam theory are obtained for the thermal buckling and vibration analysis of graded nanobeams including size effect. Moreover, in following a parametric study is accompanied to examine the effects of the several parameters such as nonlocal parameter, thermal effect, power law index and aspect ratio on the critical buckling temperatures and natural frequencies of the size-dependent FG nanobeams in detail. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FG nanobeams as compared some cases in the literature. Also, it is found that the small scale effects and nonlinear thermal loading have a significant effect on thermal stability and vibration characteristics of FG nanobeams.

Surface and size dependent effects on static, buckling, and vibration of micro composite beam under thermo-magnetic fields based on strain gradient theory

  • Mohammadimehr, Mehdi;Mehrabi, Mojtaba;Hadizadeh, Hasan;Hadizadeh, Hossein
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.513-531
    • /
    • 2018
  • In this article, static, buckling and free vibration analyses of a sinusoidal micro composite beam reinforced by single-walled carbon nanotubes (SWCNTs) with considering temperature-dependent material properties embedded in an elastic medium in the presence of magnetic field under transverse uniform load are presented. This system is used at micro or sub micro scales to enhance the stiffness of micro composite structures such as bar, beam, plate and shell. In the present work, the size dependent effects based on surface stress effect and modified strain gradient theory (MSGT) are considered. The generalized rule of mixture is employed to predict temperature-dependent mechanical and thermal properties of micro composite beam. Then, the governing equations of motions are derived using Hamilton's principle and energy method. Numerical results are presented to investigate the influences of material length scale parameters, elastic foundation, composite fiber angle, magnetic intensity, temperature changes and carbon nanotubes volume fraction on the bending, buckling and free vibration behaviors of micro composite beam. There is a good agreement between the obtained results by this research and the literature results. The obtained results of this study demonstrate that the magnetic intensity, temperature changes, and two parameters elastic foundations have important effects on micro composite stiffness, while the magnetic field has greater effects on the bending, buckling and free vibration responses of micro composite beams. Moreover, it is shown that the effects of surface layers are important, and observed that the changes of carbon nanotubes volume fraction, beam length-to-thickness ratio and material length scale parameter have noticeable effects on the maximum deflection, critical buckling load and natural frequencies of micro composite beams.

Study on the turbulent structure for two-dimensional recirculating flows by curvature dependent 2-equation model (曲率修正2方程式모델을 利용한 2次元 再循環 亂流 流動構造의 硏究)

  • 박상우;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.444-453
    • /
    • 1987
  • In the present study, a new computational closure model is proposed in order to contain physical models in the k- and .epsilon.- equations. The time scale of the third-order diffusive transport of turbulent kinetic energy in a curved streamline flow field is assumed as a function of a velocity time scale and a curvature time scale, the latter being derived from the analogy between buoyancy and streamline curvature effects on turbulence. The curvature time scale is represented by a combination of Brunt-Vaisala frequency of the curvature instability and the velocity time scale. Besides the modification of diffusive transport time scale, the destruction term in the dissipation rate equation is modeled to incorporate the streamline curvature effect on the dissipation rate of turbulent kinetic energy as a function of the ratio between velocity time scale and curvature time scale. The new curvature dependent 2-equation model is found to yield very good prediction accuracy for the various turbulent recirculating flows. Particurarly, the recovery of the mean velocity profile in the redeveloping region after the reattachment is correctly simulated by the present model.

Surface effects on scale-dependent vibration behavior of flexoelectric sandwich nanobeams

  • Ebrahimi, Farzad;Karimiasl, Mahsa;Civalek, Omer;Vinyas, Mahesh
    • Advances in nano research
    • /
    • v.7 no.2
    • /
    • pp.77-88
    • /
    • 2019
  • This paper infer the transient vibration of piezoelectric sandwich nanobeams, In present work, the flexoelectric effect on the mechanical properties of vibration piezoelectric sandwich nanobeam with different boundary conditions is investigated. According to the Nonlocal elasticity theory in nanostructures, the flexoelectricity is believed to be authentic for such size-dependent properties. The governing equations are derived by Hamilton's principle and boundary condition solved by Galerkin-based solution. This research develops a nonlocal flexoelectric sandwich nanobeam supported by Winkler-Pasternak foundation. The results of this work indicate that natural frequencies of a sandwich nanobeam increase by increasing the Winkler and Pasternak elastic constant. Also, increasing the nonlocal parameter at a constant length decreases the natural frequencies. By increasing the length to thickness ratio (L/h) of nanobeam, the nonlocal frequencies reduce.

Large amplitude free torsional vibration analysis of size-dependent circular nanobars using elliptic functions

  • Nazemnezhad, Reza;Rabiei, Mohaddese;Shafa'at, Pouyan;Eshaghi, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.535-547
    • /
    • 2021
  • This paper concerns with free torsional vibration analysis of size dependent circular nanobars with von kármán type nonlinearity. Although review of the literature suggests several studies employing nonlocal elasticity theory to investigate linear torsional behavior, linear/nonlinear transverse vibration and buckling of the nanoscale structures, so far, no study on the nonlinear torsional behavior of the nanobars, considering the size effect, has been reported. This study employs nonlocal elasticity theory along with a variational approach to derive nonlinear equation of motion of the nanobar. Then, the nonlinear equation is solved using the elliptic functions to extract the natural frequencies of the structure under fixed-fixed and fixed-free end conditions. Finally, the natural frequencies of the nanobar under different nanobar lengths, diameters, nonlocal parameters, and amplitudes of vibration are reported to illustrate the effect of these parameters on the vibration characteristics of the nanobars. In addition, the phase plane diagrams of the nanobar for various cases are reported.

A Study on Developing and Applying a Tool for Measuring Achievements of Reading Programs for Children (어린이 독서프로그램의 성과 측정 도구 개발과 적용에 관한 연구)

  • Choi, Yoon Kyung;Chung, Yeon Kyoung
    • Journal of the Korean Society for information Management
    • /
    • v.31 no.1
    • /
    • pp.7-29
    • /
    • 2014
  • The purpose of this study was to develop and evaluate a measuring scale for the effect of reading programs for children. First, in literature review, the effects and children's reading programs performance scales were analyzed, and then independent variables, dependent variables, and control variables for children's reading achievements were defined. Second, survey questionnaires for children, librarians, program instructors, and heads of child centers were designed to measure dependent variables and control variables on the scale. Third, the questionnaires for children were distributed to 10 public libraries participating in <2013 The Reading with Library> programs for two times in the early and the late time of the programs. Also, the survey questionnaires of 30 librarians, program instructors, and heads of the child centers were carried. Finally, all of the data were collected and analyzed in time series, and the improvements for the scale were proposed.

Effect of Foot Reflex Massage on Stress Responses, and Glucose Level of Non-Insulin Dependent Diabetes Mellitus Patients (발반사 마사지가 인슐린 비의존성 당뇨병 환자의 스트레스반응과 혈당에 미치는 효과)

  • Kim, Keum-Soon
    • The Korean Journal of Rehabilitation Nursing
    • /
    • v.6 no.2
    • /
    • pp.152-163
    • /
    • 2003
  • Purpose; This study was done to investigate the effect of foot reflexology on vital signs, general fatigue, foot fatigue, mood, and blood glucose levels in noninsulin dependent patients. Method: The Research design of this study was nonequivalent control group quasi-experimental design. 18 patients were assigned to the experimental group, 24 patients to the control group. The data were obtained diaberic patients with ambulatory endocrine outpatients clinic patients from 40 years old to 70 years old. Experimental groups received foot reflex massage for 30minutes three times/week every other days, and Control groups did not received foot reflex massage. The dependent variables were blood pressure, pulse rate, visual analogue scale for general fatigue, foot fatigue, mood, and blood sugar levels. Data were analyzed with $X^2$ test, t-test and repeated measure ANOVA at .0.05 level of significance. Results: There were significant difference in the pulse rate, general fatigue, foot fatigue and mood according to group and time between pre and post foot reflexology. But this research did not prove to decrease blood sugar levels. Conclusions : Foot reflexology can imorove pulse rate, general and foot fatigue, and mood status in diabetus patients. So further research need to explore the effect of decreasing of blood sugar levels.

  • PDF