• Title/Summary/Keyword: Scale defect

Search Result 239, Processing Time 0.026 seconds

Prediction of defect shape change using multiple scale modeling during wire rod rolling process (멀티 스케일 모델을 적용한 선재 공정의 미세결함 형상 변화 예측)

  • Kwak, Eun-Jeong;Kang, Gyeong-Pil;Lee, Kyung-Hoon;Son, Il-Heon
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.169-172
    • /
    • 2009
  • Multiple scale modeling has been applied to predict defect shape change during the wire rod rolling process. The size difference between bloom and defect prevent using usual FEM approaches due to the enormous number of elements required to depict the defect. The newly developed multiple scale model can visualize defect shape changes during the multi stands rolling process. The defect positioned at the top and side of bloom are smoothed out but the one at the middle evolved as folding or remained as crack. This approach can be used for defect control with roll shape design and initial bloom shape.

  • PDF

The Effect of Oxide Layer Thickness to the Scale Defects Generation during Hot finish Rolling (열연사상 압연시 스케일 결함발생에 미치는 산화피막 두께의 영향)

  • 민경준
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.412-422
    • /
    • 1999
  • Scale defects generated on the strip surface in a tandem finishing mill line are collected from the strip trapped among the production mills by freezing the growing scale on the strip by the melt glass coating and shutting down the line simultaneously. The samples observed of its cross sectional figure showed the process of scale defect formation where the defects are formed at the base metal surface by thicker oxidized scale during each rolling passes. The properties of the oxidized layer growth both at rolling and inter-rolling are detected down sized rolling test simulating carefully the rolling condition of the production line. The thickness of the oxidized layer at each rolling pass are simulated numerically. The critical scale thickness to avoid the defect formation is determined through the expression of mutual relation between oxidized layer thickness and the lanks of the strip called quality for the scale defects. The scale growth of scale less than the critical thickness and also to keep the bulk temperature tuning the water flow rate and cooling time appropriately. Two units of Inerstand Cooler are designed and settled among the first three stands in the production line. Two units of scale defect is counted from the recoiled strip and the results showed distinct decrease of the defects comparing to the conventionaly rolled products.

  • PDF

Design and Preparation of High-Performance Bulk Thermoelectric Materials with Defect Structures

  • Lee, Kyu Hyoung;Kim, Sung Wng
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.2
    • /
    • pp.75-85
    • /
    • 2017
  • Thermoelectric is a key technology for energy harvesting and solid-state cooling by direct thermal-to-electric energy conversion (or vice versa); however, the relatively low efficiency has limited thermoelectric systems to niche applications such as space power generation and small-scale or high-density cooling. To expand into larger scale power generation and cooling applications such as ATEG (automotive thermoelectric generators) and HVAC (heating, ventilation, and air conditioning), high-performance bulk thermoelectric materials and their low-cost processing are essential prerequisites. Recently, the performance of commercial thermoelectric materials including $Bi_2Te_3$-, PbTe-, skutterudite-, and half-Heusler-based compounds has been significantly improved through non-equilibrium processing technologies for defect engineering. This review summarizes material design approaches for the formation of multi-dimensional and multi-scale defect structures that can be used to manipulate both the electronic and thermal transport properties, and our recent progress in the synthesis of conventional thermoelectric materials with defect structures is described.

Performance evaluation of wavelet and curvelet transforms based-damage detection of defect types in plate structures

  • Hajizadeh, Ali R.;Salajegheh, Javad;Salajegheh, Eysa
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.667-691
    • /
    • 2016
  • This study focuses on the damage detection of defect types in plate structures based on wavelet transform (WT) and curvelet transform (CT). In particular, for damage detection of structures these transforms have been developed since the last few years. In recent years, the CT approach has been also introduced in an attempt to overcome inherent limitations of traditional multi-scale representations such as wavelets. In this study, the performance of CT is compared with WT in order to demonstrate the capability of WT and CT in detection of defect types in plate structures. To achieve this purpose, the damage detection of defect types through defect shape in rectangular plate is investigated. By using the first mode shape of plate structure and the distribution of the coefficients of the transforms, the damage existence, the defect location and the approximate shape of defect are detected. Moreover, the accuracy and performance generality of the transforms are verified through using experimental modal data of a plate.

TFT-LCD Defect Detection Using Mean Difference Between Local Regions Based on Multi-scale Image Reconstruction (로컬 영역 간 평균 화소값 차를 이용한 멀티스케일 기반의 TFT-LCD 결함 검출)

  • Jung, Chang-Do;Lee, Seung-Min;Yun, Byoung-Ju;Lee, Joon-Jae;Choi, Il;Park, Kil-Houm
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.4
    • /
    • pp.439-448
    • /
    • 2012
  • TFT-LCD panel images have non-uniform brightness, noise signal and defect signal. It is hard to divide defect signal because of non-uniform brightness and noise signal, so various divide methods have being developed. In this paper, we suggest method to divide defective regions on TFT-LCD panel image by estimating a menas of two different size of windows, which is suggested by Eikvil et al., and using difference of them. But in this method, the size of detectable defects is restricted by the size of window, hence it has inefficient problem that the size of window have to increase to divide a large defect region. To solve this problem we suggest an algorithm which can divide various size of defects, by using Multi-scale and restrict a detectable size of defects in each scale. To prove an efficiency of suggested algorithm, we show that resulting images of real TFT-LCD panel images and an artificial image with various defects.

Investigation of Turbulence Characteristics of Defect Law Region over Flat plate (평판 위 흐름 Defect Law 영역의 난류 특성 연구)

  • Suh, Sung-Bu;Park, Il-Ryong;Jung, Kwang-Hyo;Lim, Jung-Gwan;Kim, Kwang-Soo;Kim, Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.268-273
    • /
    • 2014
  • To investigate the turbulence characteristics within the boundary layer over a flat plate, an experimental study was performed using a PIV technique in a circular water channel. For two water velocities, 0.92 and 1.99 m/s, the water velocity profiles were taken and analyzed to determine turbulent characteristics such as the Reynolds stress, Taylor micro-length scale, and Kolmogorov length scale within the defect law region of the boundary layer. These analysis methods may be applied to research on the friction drag reduction technology using micro-bubbles or an air sheet over the surface of a ship's hull, because the physical reason for the friction drag reduction could be found by understanding the variation of the turbulence characteristics and structures in the boundary layer.

A study of facial nerve grading system (구안와사(口眼喎斜)의 평가방법(評價方法)에 대한 고찰(考察))

  • Kim, Jong-In;Koh, Hyung-Kyun;Kim, Chang-Hwan
    • Journal of Acupuncture Research
    • /
    • v.18 no.2
    • /
    • pp.1-17
    • /
    • 2001
  • Background and Objetive : Lack of uniformity in reporting facial nerve recovery in patients with facial nerve paralysis has been a major disadvantage in comparing treatment modalities. The objective evaluation of facial nerve function is a complex procedure. The House and Brackmann grading system, the Yanagihara grading system has been recommend as a universal standard for assessing the degree of facial nerve palsy. However, clinical studies for treatment of facial palsy have rarely used this universal standard in oriental medicine. That is the reason for analysing this facial nerve grading system. Material and Method : We choose 10 scales reported from 1955 till 1995. These facial nerve grading systems may be classified as Gross system, Regional system and Specific system. Result and Conculsion : The scales of Botmann and Jonkees, May, Peitersen, and House and Brackmann are the gross facial nerve grading systems with which we grossly assess the facial motor dysfunction and the secondary defect. Among these scales, H-B scale is the most widespred The scales of Yanagihara(若杉文吉), Smith, Adour and Swanson, Jassen, FEMA are the regional facial nerve grading system in which we weight, or unweight the facial motor dysfunction and the secondary defect. For example, the scales of Yanagihara(若杉文吉) and Smith are the unweighted regional scale, the scale of Adour and Swanson, Jassen, FEMA are the weighted regional grading system. The scale of Stennert is the Specific facial nerve grading system in which we respectively assess the grade of facial dysfunction at rest, in motion and the secondary defect. For the objective evaluation of the oriental medicine treatment for facial palsy, we must use the universal standard scale, i.e. the H-B scale, the Yanagihara scale.

  • PDF

Single-Domain-Like Graphene with ZnO-Stitching by Defect-Selective Atomic Layer Deposition

  • Kim, Hong-Beom;Park, Gyeong-Seon;Nguyen, Van Long;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.329-329
    • /
    • 2016
  • Large-area graphene films produced by means of chemical vapor deposition (CVD) are polycrystalline and thus contain numerous grain boundaries that can greatly degrade their performance and produce inhomogeneous properties. A better grain boundary engineering in CVD graphene is essential to realize the full potential of graphene in large-scale applications. Here, we report a defect-selective atomic layer deposition (ALD) for stitching grain boundaries of CVD graphene with ZnO so as to increase the connectivity between grains. In the present ALD process, ZnO with hexagonal wurtzite structure was selectively grown mainly on the defect-rich grain boundaries to produce ZnO-stitched CVD graphene with well-connected grains. For the CVD graphene film after ZnO stitching, the inter-grain mobility is notably improved with only a little change in free carrier density. We also demonstrate how ZnO-stitched CVD graphene can be successfully integrated into wafer-scale arrays of top-gated field effect transistors on 4-inch Si and polymer substrates, revealing remarkable device-to-device uniformity.

  • PDF

Determination of Alpha Defect Center in the Nature Using EPR Spectroscopy

  • Cho, Young-Hwan;Hyun, Sung-Pil;Pilsoo Hahn
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.5 no.1
    • /
    • pp.13-18
    • /
    • 2001
  • Natural alpha radiation produced a stable defect center to certain minerals. Electron Paramagnetic Resonance(EPR) spectroscopy is a powerful tool f3r quantifying this defect center. EPR method has been applied to trace alpha-radiation effect around the uranium ore deposit. The results show that EPR technique can be used to measure rapidly and nondestructively the defect center produced by natural alpha radiation. In general, a good correlation was achieved between defect center concentration and actinide elements(U, Th). These results imply that the concentration of defect center is dependent on the alpha radiation dose over long time scale.

  • PDF

Modification of acceleration signal to improve classification performance of valve defects in a linear compressor

  • Kim, Yeon-Woo;Jeong, Wei-Bong
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.71-79
    • /
    • 2019
  • In general, it may be advantageous to measure the pressure pulsation near a valve to detect a valve defect in a linear compressor. However, the acceleration signals are more advantageous for rapid classification in a mass-production line. This paper deals with the performance improvement of fault classification using only the compressor-shell acceleration signal based on the relation between the refrigerant pressure pulsation and the shell acceleration of the compressor. A transfer function was estimated experimentally to take into account the signal noise ratio between the pressure pulsation of the refrigerant in the suction pipe and the shell acceleration. The shell acceleration signal of the compressor was modified using this transfer function to improve the defect classification performance. The defect classification of the modified signal was evaluated in the acceleration signal in the frequency domain using Fisher's discriminant ratio (FDR). The defect classification method was validated by experimental data. By using the method presented, the classification of valve defects can be performed rapidly and efficiently during mass production.