• Title/Summary/Keyword: Scale Target

Search Result 954, Processing Time 0.023 seconds

Scale Invariant Target Detection using the Laplacian Scale-Space with Adaptive Threshold (라플라스 스케일스페이스 이론과 적응 문턱치를 이용한 크기 불변 표적 탐지 기법)

  • Kim, Sung-Ho;Yang, Yu-Kyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.66-74
    • /
    • 2008
  • This paper presents a new small target detection method using scale invariant feature. Detecting small targets whose sizes are varying is very important to automatic target detection. Scale invariant feature using the Laplacian scale-space can detect different sizes of targets robustly compared to the conventional spatial filtering methods with fixed kernel size. Additionally, scale-reflected adaptive thresholding can reduce many false alarms. Experimental results with real IR images show the robustness of the proposed target detection in real world.

Structurally Enhanced Correlation Tracking

  • Parate, Mayur Rajaram;Bhurchandi, Kishor M.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4929-4947
    • /
    • 2017
  • In visual object tracking, Correlation Filter-based Tracking (CFT) systems have arouse recently to be the most accurate and efficient methods. The CFT's circularly shifts the larger search window to find most likely position of the target. The need of larger search window to cover both background and object make an algorithm sensitive to the background and the target occlusions. Further, the use of fixed-sized windows for training makes them incapable to handle scale variations during tracking. To address these problems, we propose two layer target representation in which both global and local appearances of the target is considered. Multiple local patches in the local layer provide robustness to the background changes and the target occlusion. The target representation is enhanced by employing additional reversed RGB channels to prevent the loss of black objects in background during tracking. The final target position is obtained by the adaptive weighted average of confidence maps from global and local layers. Furthermore, the target scale variation in tracking is handled by the statistical model, which is governed by adaptive constraints to ensure reliability and accuracy in scale estimation. The proposed structural enhancement is tested on VTBv1.0 benchmark for its accuracy and robustness.

FPGA-Based Real-Time Multi-Scale Infrared Target Detection on Sky Background

  • Kim, Hun-Ki;Jang, Kyung-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.11
    • /
    • pp.31-38
    • /
    • 2016
  • In this paper, we propose multi-scale infrared target detection algorithm with varied filter size using integral image. Filter based target detection is widely used for small target detection, but it doesn't suit for large target detection depending on the filter size. When there are multi-scale targets on the sky background, detection filter with small filter size can not detect the whole shape of the large targe. In contrast, detection filter with large filter size doesn't suit for small target detection, but also it requires a large amount of processing time. The proposed algorithm integrates the filtering results of varied filter size for the detection of small and large targets. The proposed algorithm has good performance for both small and large target detection. Furthermore, the proposed algorithm requires a less processing time, since it use the integral image to make the mean images with different filter sizes for subtraction between the original image and the respective mean image. In addition, we propose the implementation of real-time embedded system using FPGA.

Object Tracking Based on Centroids Shifting with Scale Adaptation (중심 이동 기반의 스케일 적응적 물체 추적 알고리즘)

  • Lee, Suk-Ho;Choi, Eun-Cheol;Kang, Moon-Gi
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.4
    • /
    • pp.529-537
    • /
    • 2011
  • In this paper, we propose a stable scale adaptive tracking method that uses centroids of the target colors. Most scale adaptive tracking methods have utilized histograms to determine target window sizes. However, in certain cases, histograms fail to provide good estimates of target sizes, for example, in the case of occlusion or the appearance of colors in the background that are similar to the target colors. This is due to the fact that histograms are related to the numbers of pixels that correspond to the target colors. Therefore, we propose the use of centroids that correspond to the target colors in the scale adaptation algorithm, since centroids are less sensitive to changes in the number of pixels that correspond to the target colors. Due to the spatial information inherent in centroids, a direct relationship can be established between centroids and the scale of target regions. Generally, after the zooming factors that correspond to all the target colors are calculated, the unreliable zooming factors are filtered out to produce a reliable zooming factor that determines the new scale of the target. Combined with the centroid based tracking algorithm, the proposed scale adaptation method results in a stable scale adaptive tracking algorithm. It tracks objects in a stable way, even when the background colors are similar to the colors of the object.

An Anti-occlusion and Scale Adaptive Kernel Correlation Filter for Visual Object Tracking

  • Huang, Yingping;Ju, Chao;Hu, Xing;Ci, Wenyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2094-2112
    • /
    • 2019
  • Focusing on the issue that the conventional Kernel Correlation Filter (KCF) algorithm has poor performance in handling scale change and obscured objects, this paper proposes an anti-occlusion and scale adaptive tracking algorithm in the basis of KCF. The average Peak-to Correlation Energy and the peak value of correlation filtering response are used as the confidence indexes to determine whether the target is obscured. In the case of non-occlusion, we modify the searching scheme of the KCF. Instead of searching for a target with a fixed sample size, we search for the target area with multiple scales and then resize it into the sample size to compare with the learnt model. The scale factor with the maximum filter response is the best target scaling and is updated as the optimal scale for the following tracking. Once occlusion is detected, the model updating and scale updating are stopped. Experiments have been conducted on the OTB benchmark video sequences for compassion with other state-of-the-art tracking methods. The results demonstrate the proposed method can effectively improve the tracking success rate and the accuracy in the cases of scale change and occlusion, and meanwhile ensure a real-time performance.

Halo interactions in the Horizon run 4 simulation

  • L'Huillier, Benjamin;Park, Changbom;Kim, Juhan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.46-46
    • /
    • 2014
  • Interactions such as mergers and flybys play a fundamental role in shaping galaxy morphology. We used the Horizon Run 4 cosmological N-body simulations to study the frequency and the type of halo interactions as a function of the environment, the separation p, the mass ratio q, and the target halo mass. We defined targets as haloes more massive than 10^11 Msun/h, and a target is interacting if it is located within the virial radius of a neighbour halo more massive than 0.4 times the target mass. We find that the interaction rate as a function of time has a universal shape for different halo mass and large-scale density, with an increase and saturation. Larger density yield steeper slopes and larger final interaction rates, while larger masses saturate later. Most interactions happen at large-scale density contrast ${\delta}$ about 10^3, regardless of the redshift. We also report the existence of two modes of interactions in the (p,q) plane, reflecting the nature (satellite or main halo) of the target halo. These two trends strongly evolve with redshift, target mass, and large-scale density. Interacting pairs have similar spins parameters and aligned spins, with radial trajectories, and prograde encounters for non-radial trajectories. The satellite trajectories become less and less radial as time proceed. This effect is stronger for higher-mass target, but independent of the large-scale density.

  • PDF

A Lightweight Real-Time Small IR Target Detection Algorithm to Reduce Scale-Invariant Computational Overhead (스케일 불변적인 연산량 감소를 위한 경량 실시간 소형 적외선 표적 검출 알고리즘)

  • Ban, Jong-Hee;Yoo, Joonhyuk
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.4
    • /
    • pp.231-238
    • /
    • 2017
  • Detecting small infrared targets from the low-SCR images at a long distance is very hard. The previous Local Contrast Method (LCM) algorithm based on the human visual system shows a superior performance of detecting small targets by a background suppression technique through local contrast measure. However, its slow processing speed due to the heavy multi-scale processing overhead is not suitable to a variety of real-time applications. This paper presents a lightweight real-time small target detection algorithm, called by the Improved Selective Local Contrast Method (ISLCM), to reduce the scale-invariant computational overhead. The proposed ISLCM applies the improved local contrast measure to the predicted selective region so that it may have a comparable detection performance as the previous LCM while guaranteeing low scale-invariant computational load by exploiting both adaptive scale estimation and small target feature feasibility. Experimental results show that the proposed algorithm can reduce its computational overhead considerably while maintaining its detection performance compared with the previous LCM.

Robust Object Tracking for Scale Changes (스케일에 강건한 물체 추적 기법)

  • Cheon, Gi-Hong;Kang, Hang-Bong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.194-203
    • /
    • 2008
  • Though conventional video surveillance systems such as CCTV depended on operators, recently developed intelligent surveillance systems no longer needed operators. However, these new intelligent surveillance systems have their own problems such as Occlusion, changing scale of target object, and affine. This paper handled information damage caused by changing the scale of the target object among other objects. Due to the change of the scale, the inaccurate information of target can be obtained when we update the background information. To handle this problem, we introduce a solution for information damage caused by problem of changing scale of target object located among other objects. Specifically, we suggest multi-stage sampling particle filter based advanced MSER for object tracking system. Through this method, the problem caused by changing scale of target can be avoided.

Surf points based Moving Target Detection and Long-term Tracking in Aerial Videos

  • Zhu, Juan-juan;Sun, Wei;Guo, Bao-long;Li, Cheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5624-5638
    • /
    • 2016
  • A novel method based on Surf points is proposed to detect and lock-track single ground target in aerial videos. Videos captured by moving cameras contain complex motions, which bring difficulty in moving object detection. Our approach contains three parts: moving target template detection, search area estimation and target tracking. Global motion estimation and compensation are first made by grids-sampling Surf points selecting and matching. And then, the single ground target is detected by joint spatial-temporal information processing. The temporal process is made by calculating difference between compensated reference and current image and the spatial process is implementing morphological operations and adaptive binarization. The second part improves KALMAN filter with surf points scale information to predict target position and search area adaptively. Lastly, the local Surf points of target template are matched in this search region to realize target tracking. The long-term tracking is updated following target scaling, occlusion and large deformation. Experimental results show that the algorithm can correctly detect small moving target in dynamic scenes with complex motions. It is robust to vehicle dithering and target scale changing, rotation, especially partial occlusion or temporal complete occlusion. Comparing with traditional algorithms, our method enables real time operation, processing $520{\times}390$ frames at around 15fps.

Target Scattering Echo Simulation for Active Sonar System in the Geometric Optics Region (기하광학영역에서의 능동소나 표적신호합성)

  • 신기철;박재은;김재수;최상문;김우식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.91-97
    • /
    • 2001
  • Since the new field information of target signal is important in the development and verification of active sonar system, experimental method and simulation technique are widely used in order to analyze the detail characteristics of target scattered echoes. Therefore, in this paper, the scale target experiment is performed to develope and Improve the target signal simulation model. Since the experimental results show that the specular reflection is the major component among scattering mechanisms, the target signal simulation model based on the Geometric Optics Theory (GOT) is developed. Complex target is separated into simple shapes, known as canonical shape. The contribution from individual canonical shapes are summed with proper phase and amplitude to produce the target strength of the whole complex body. Simulated target signal is compared with the experimental results and discussed.

  • PDF