• 제목/요약/키워드: Scaffold Defect

검색결과 60건 처리시간 0.022초

Effect of Keratin-Based Biocomposite Hydrogels as a RhBMP-2 Carrier in Calvarial Bone Defects Mouse Model

  • Jongjin, Lee;Jinsu, Kang;Jaewon, Seol;Namsoo, Kim;Suyoung, Heo
    • 한국임상수의학회지
    • /
    • 제39권6호
    • /
    • pp.302-310
    • /
    • 2022
  • Recently, in human medicine and veterinary medicine, interest in synthetic bone graft is increasing. Among them, bone morphogenic protein (BMP) is currently being actively researched and applied to clinical trials. However, BMP has the disadvantage of being expensive and easily absorbed into surrounding tissues. Therefore, BMP requires the use of small amounts and rhBMP (recombinant human bone morphogenetic protein)-2 carriers that can be released slowly. Hydrogel has the property of swelling a large amount of water inside when it is aqueous solution, and when it is, it consists of more than 90 percent water. Using these properties, hydrogels are often used as rhBMP-2 carrier. The scaffold used in this study is a hydrogel made from which keratin is extracted using human hair and based on it. In this study, we wanted to see the effect of bone formation in the calvarial defect model by using keratin-based hydrogel made with human hair as a scaffold. The experiment was conducted by dividing 3 groups a total of 12 mice. Calvarial bone defect is set to all 4 mm diameters. Bone formation was evaluated by using gross evaluation, micro-computed tomography (micro-CT), immunohistochemistry. Groups using keratin-based hydrogel were significantly observed compared to Group 1s, and the most bone formations were found when rhBMP-2 and hydrogel were used. This represents the superiority of the functions of the rhBMP-2 carrier by a new material, keratin-based hydrogel. Through gross evaluation, micro-CT, and immunohistochemistry, we can confirm that keratin-based hydrogel is a useful rhBMP-2 carrier.

Fibrous composite matrix of chitosan/PLGA for tissue regeneration

  • Shim, In-Kyong;Hwang, Jung-Hyo;Lee, Sang-Young;Cho, Hyun-Chul;Lee, Myung-Chul;Lee, Seung-Jin
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.237.3-238
    • /
    • 2003
  • Tissue engineering may be adequately defined as the science of persuading the body to regenerate or repair tissue that fail to regenerate or heal spontaneously. In the various techniques of cartilage tissue engineering, the use of 3-dimensional polymeric scaffolds implanted at a tissue defect site is usually involved. These scaffolds provided a framework for cells to attach, proliferate, and form extracellular matrix(ECM). The scaffolds may also serve as carriers for cells and/or growth factors. In the ideal case, scaffold absorb at a predefined rate so that the 3-dimensional space occupied by the initial scaffold is replaced by regenerated host tissue. (omitted)

  • PDF

랫드의 두개골결손부 모델에서 HA/PCL 지지체를 사용한 골이식 시 Matrigel의 효과 (Effect of Matrigel for Bone Graft using Hydroxyapatite/Poly $\varepsilon$-caprolactone Scaffold in a Rat Calvarial Defect Model)

  • 김세은;심경미;김승언;최석화;배춘식;한호재;강성수
    • 한국임상수의학회지
    • /
    • 제27권4호
    • /
    • pp.325-329
    • /
    • 2010
  • 본 연구에서는 hydroxyapatite/poly $\varepsilon$-caprolactone composite (HA/PCL) 지지체와 matrigel을 랫드의 두개골 결손부 모델에 함께 이식 시의 골형성 정도를 평가하였다. 두개골결손부는 Sprague Dawley rat (n = 18)에서 수술적으로 형성하였으며 실험군은 Matrigel과 함께 HA/PCL 지지체를 이식한 군(M-HA/PCL group, n = 6)과 HA/PCL 지지체단독이식군(HA/PCL group, n = 6)으로 나누었고 대조군(CD group, n = 6)에는 아무 것도 이식하지 않았다. 수술 4주 후, 골형성은 방사선촬영, micro CT 및 조직검사를 통해 평가되었다. 방사선상에서 CD군의 골형성은 관찰되지 않았으나 HA/PCL과 M-HA/PCL군에서는 관찰되었고 골과 유사한 방사선비투과성이 M-HA/PCL군에서 더 많이 관찰되었다. Micro CT 평가에서 골부피는 HA/PCL군보다 M-HA/PCL군에서 더 높았으나 두 군 사이의 유의적 차이는 관찰할 수 없었다. 그러나 골밀도에서는 HA/PCL군보다 M-HA/PCL군이 더 유의적으로 높음을 확인할 수 있었다(p < 0.05). 조직학적 검사에서는 CD군에서 새로운 골은 원래 존재하던 골로부터만 형성되었으며 두개골결손부 내의 골형성은 보이지 않았다. HA/PCL군에서 새로운 골형성은 원래 존재하던 골로부터만 유래되었으나 M-HA/PCL군은 가장 많은 골형성을 보여주었으며 새로운 골이 원래 존재하던 골과 HA/PCL지지체 주변에서도 관찰되었다. 이러한 결과로 미루어볼 때 HA/PCL 지지체와 matrigel을 함께 사용하는 것이 골의 임계결손부에서 골형성을 증대시키는 효과적인 방법이 될 수 있을 것으로 생각된다.

PLLA/HA Composite Scaffold와 골수 줄기세포를 이용한 조직공학적 골재생에 대한 연구 (BONE TISSUE ENGINEERING USING PLLA/HA COMPOSITE SCAFFOLD AND BONE MARROW MESENCHYMAL STEM CELL)

  • 김병렬;장현석;임재석;이의석;김동현
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제30권4호
    • /
    • pp.323-332
    • /
    • 2008
  • Aim of the study: Scaffolds are crucial to tissue engineering/regeneration. Biodegradable polymer/ceramic composite scaffolds can overcome the limitations of conventional ceramic bone substitutes such as brittleness and difficulty in shaping. In this study, poly(L-lactide)/hydroxyapatite(PLLA/HA) composite scaffolds were fabricated for in vivo bone tissue engineering. Material & methods: In this study, PLLA/HA composite microspheres were prepared by double emulsion-solvent evaporation method, and were evaluated in vivo bone tissue engineering. Bone marrow mesenchymal stem cell from rat iliac crest was differentiated to osteoblast by adding osteogenic medium, and was mixed with PLLA/HA composite scaffold in fibrin gel and was injected immediately into rat cranial bone critical size defect(CSD:8mm in diameter). At 1. 2, 4, 8 weeks after implantation, histological analysis by H-E staining, histomorphometric analysis and radiolographic analysis were done. Results: BMP-2 loaded PLLA/HA composite scaffolds in fibrin gel delivered with osteoblasts differentiated from bone marrow mesenchymal stem cells showed rapid and much more bone regeneration in rat cranial bone defects than control group. Conclusion: This results suggest the feasibility and usefulness of this type of scaffold in bone tissue engineering.

성견에서 Acelluar dermal matrix가 1면 골내낭 결손부의 치주조직 재생에 미치는 영향 (The effects of Acellular dermal matrix on the healing of 1 wall intrabony defects in dogs)

  • 박주언;김병옥;박주철;장현선
    • Journal of Periodontal and Implant Science
    • /
    • 제36권1호
    • /
    • pp.27-37
    • /
    • 2006
  • Although the main purpose of periodontal treatment to regenerate is the complete regeneration of periodontal tissue due to periodontal disease, most of the treatment cannot meet such purpose because healing by long epithelial junction. Therefore, diverse materials of resorbable and non-resorbable have been used to regenerate the periodontal tissue. Due to high risk of exposure and necessity of secondary surgical procedure when using non-resorbable membrane, guided tissue regeneration using the resorbable membrane has gain popularity, recently. However, present resorbable membrane has the disadvantage of not having sufficient time to regenerate date to the difference of resorption rate according to surgical site. Meanwhile, other than the structure stability and facile manipulation, acellular dermal matrix has been reported to be a possible scaffold for cellular proliferation due to rapid revascularization and favorable physical properties for cellular attachment and proliferation. The purpose of this study is to estimate the influence of acellular dermal matrix on periodontal ligament, cementum and alveolar bone when acellular dermal matrix is implanted to 1-wall alveolar bone defect. 4 dogs of 12 to 16 month old irrelevant to sex , which below 15Kg of body weight, has been used in this study. ADM has been used for the material of guided tissue regeneration. The 3rd premolar of the lower jaw was extracted bilaterally and awaited for self-healing. subsequently buccal and lingual flap was elevated to form one wall intrabony defect with the depth and width of 4mm on the distal surface of 2nd premolar and the mesial surface of 4th premolar. After the removal of periodontal ligament by root planing. notch was formed on the basal position. Following the root surface treatment, while the control group had the flap sutured without any treatment on surgically induced intrabony defect. Following the root surface treatment, the flap of intrabony defect was sutured with the ADM inserted while the control group sutured without any insertion. The histologic specimen was observed after 4 and 8 weeks of treatment. The control group was partially regenerated by periodontal ligament, new cementum and new alveolar bone. the level of regeneration is not reached on the previous formed notch. but, experimental group was fully regenerated by functionally oriented periodontal ligament fiber. new cementum and new alveolar bone. In conclusion, we think that ADM seems to be used by scaffold for periodontal ligament cells and the matrix is expected to use on guided tissue regeneration.

Novel Calcium Phosphate Glass for Hard-Tissue Regeneration

  • Lee, Yong-Keun;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • 제38권sup2호
    • /
    • pp.273-298
    • /
    • 2008
  • Purpose: The aim of this review is to introduce a novel bone-graft material for hard-tissue regeneration based on the calcium phosphate glass(CPG). Materials and Methods: CPG was synthesized by melting and subsequent quenching process in the system of CaO-$CaF_2-P_2O_5$-MgO-ZnO having a much lower Ca/P ratio than that of conventional calcium phosphates such as HA or TCP. The biodegradability and bioactivity were performed. Effects on the proliferation, calcification and mineralization of osteoblast-like cells were examined in vitro. Influence in new bone and cementum formations was investigated in vivo using calvarial defects of Sprague-Dawley rats as well as 1-wall intrabony defect of beagle dogs. The application to the tissue-engineered macroporous scaffold and in vitro and in vivo tests was explored. Results: The extent of dissolution decreased with increasing Ca/P ratio. Exposure to either simulated body fluid or fetal bovine serum caused precipitation on the surface. The calcification and mineralization of osteoblast-like cells were enhanced by CPG. CPG promoted new bone and cementum formation in the calvarial defect of Sprague-Dawley rats after 8 weeks. The macroporous scaffolds can be fabricated with $500{\sim}800{\mu}m$ of pore size and a three-dimensionally interconnected open pore system. The stem cells were seeded continuously proliferated in CPG scaffold. Extracellular matrix and the osteocalcin were observed at the $2^{nd}$ days and $4^{th}$ week. A significant difference in new bone and cementum formations was observed in vivo (p<0.05). Conclusion: The novel calcium phosphate glass may play an integral role as potential biomaterial for regeneration of new bone and cementum.

Artificial Dermis Composed of Gelatin, Hyaluronic Acid and (1\longrightarrow3),(1\longrightarrow6)-$\beta$-Glucan

  • Lee, Sang-Bong;Jeon, Hyun-Wook;Lee, Young-Woo;Cho, Seong-Kwan;Lee, Young-Woo;Song, Kang-Won;Park, Moon-Hyang;Hong, Sung-Hwa
    • Macromolecular Research
    • /
    • 제11권5호
    • /
    • pp.368-374
    • /
    • 2003
  • Porous scaffolds composed of gelatin and polysaccharides such as hyaluronic acid and $\beta$-glucan were prepared by using the freeze-drying method after cross-linking with l-ethyl-(3-3-dimethylaminopropyl) carbodiimide hydrochloride (EDC). The scaffold had an inter-connected pore structure with the sufficient pore size for use as a support for the growth of fibroblasts. Results for the contact angle and cell attachment confirmed that high gelatin content in a mixture was suitable for cellular attachment and distribution in two- or three-dimensional fibroblast cultures. However, the addition of polysaccharides aroused the synergistic effects of morphologic and mechanical property of gelatin-based scaffolds. To prepare the artificial dermis for the wound dressing to mimic the normal human dermal skin, fibroblasts were isolated from a child's foreskin, and cultured in gelatin-based scaffolds. An in vivo study showed that the artificial dermis containing the fibroblasts enhanced the wound healing rate and re-epithelialization of a full-thickness skin defect rather than the acellular scaffold after one week.

Assessment of stem cell viability in the initial healing period in rabbits with a cranial bone defect according to the type and form of scaffold

  • Kang, Seung-Hwan;Park, Jun-Beom;Kim, InSoo;Lee, Won;Kim, Heesung
    • Journal of Periodontal and Implant Science
    • /
    • 제49권4호
    • /
    • pp.258-267
    • /
    • 2019
  • Purpose: Increased bone regeneration has been achieved through the use of stem cells in combination with graft material. However, the survival of transplanted stem cells remains a major concern. The purpose of this study was to evaluate the viability of transplanted mesenchymal stem cells (MSCs) at an early time point (24 hours) based on the type and form of the scaffold used, including type I collagen membrane and synthetic bone. Methods: The stem cells were obtained from the periosteum of the otherwise healthy dental patients. Four symmetrical circular defects measuring 6 mm in diameter were made in New Zealand white rabbits using a trephine drill. The defects were grafted with 1) synthetic bone (${\beta}$-tricalcium phosphate/hydroxyapatite [${\beta}-TCP/HA$]) and $1{\times}10^5MSCs$, 2) collagen membrane and $1{\times}10^5MSCs$, 3) ${\beta}-TCP/HA+collagen$ membrane and $1{\times}10^5MSCs$, or 4) ${\beta}-TCP/HA$, a chipped collagen membrane and $1{\times}10^5MSCs$. Cellular viability and the cell migration rate were analyzed. Results: Cells were easily separated from the collagen membrane, but not from synthetic bone. The number of stem cells attached to synthetic bone in groups 1, 3, and 4 seemed to be similar. Cellular viability in group 2 was significantly higher than in the other groups (P<0.05). The cell migration rate was highest in group 2, but this difference was not statistically significant (P>0.05). Conclusions: This study showed that stem cells can be applied when a membrane is used as a scaffold under no or minimal pressure. When space maintenance is needed, stem cells can be loaded onto synthetic bone with a chipped membrane to enhance the survival rate.

방사성골괴사 극복을 위한 피브린지지체의 효용성 평가 (Evaluation the Effectiveness of Fibrinogen to Overcome Bone Radiation Damage)

  • 정홍문
    • 한국방사선학회논문지
    • /
    • 제15권4호
    • /
    • pp.539-545
    • /
    • 2021
  • 방사선 치료는 방사선 부작용을 수반한다. 특히 혈관계의 장해를 수반하게 된다. 따라서 방사선의 조사가 이루어진 뼈의 재생부위에는 산소와 영양분 결핍이 발생된다. 결국에는 뼈를 재생할 수 없는 방사성골괴사 (osteoradionecrosis)가 세포 환경적으로 만들어 진다. 전례연구에 따르면 방사성골괴사 상태를 극복하기 위해 골형성 단백질-2 (Bone Morphogenetic Protein-2)를 사용한다. 이번 연구에서는 쥐의 두정부에 방사선 조사 후 뼈의 재생에 가장 많이 사용되는 생체재료인 피브린 지지체에 골형성 단백질-2 를 처리하여 방사성 골괴사 부위에 이식한 후 뼈의 재생능력을 알아보고자 하였다. 또한 몇 주부터 뼈 재생 효과가 발생되는지를 검증하고자 하였다. 실험결과에 따르면 방사선이 조사된 쥐의 두개골 결손모델에서는 4 주초기 뼈 형성 기간 보다는 후반 뼈 형성시기인 8 주가 지나야 뼈 형성의 효과가 발생하는 결과를 얻을 수 있었다. 더군다나 쥐의 두 개부 결함 모델에서 피브린 지지체의 재생 뼈 형성은 결손 조직의 내부에서부터 형성되는 결과를 얻었다.

실크 피브로인 지지체와 Substance P를 이용한 골 이식재 (Silk Fibroin and Substance P Combination Graft for the Reconstruction of a Bone Defect)

  • 박기유;최교희;박영주;송지영;김성곤;조유영;권해용;강석우
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제33권4호
    • /
    • pp.293-300
    • /
    • 2011
  • Purpose: Substance P is a well known neurotransmitter and has been known to mediate pain. Recently, it has been unveiled that substance P is involved in the recruitment of mesenchymal stem cells to wound sites. The purpose of this study was to exam bone formation when a combination of substance P and silk fibroin was used in a bone defect model. Methods: Twenty rabbits were used and 40 calvarial defects were formed. They were divided as 4 groups (unfilled control, silk only, silk+$10{\mu}g$/ml substance P; Sub10, and silk+$100{\mu}g$/ml substance P; Sub100). All animals were humanely sacrificed 4 or 8 weeks after grafting. The specimens were analyzed by micro-computerized tomography and histological analysis. Results: When compared to the unfilled control to silk only group, there was significant difference in bone mineral density (BMD) and the attenuation coefficient (AC) at 4 weeks ($p$=0.037 and 0.038, respectively). When compared Sub10 group to Sub100 group, there was significant difference in BMD and AC at 8 weeks ($p$=0.004 for all). Residual graft amounts were $52.1{\pm}15.8$%, $15.2{\pm}9.2$% and $9.0{\pm}3.3$% for silk only, Sub10, and Sub100 groups, respectively. When comparing the residual graft amount of silk only to sub10 or sub100, the differences were statistically significant ($p$ <0.001). Conclusion: The silk fibroin scaffold showed higher BMD and AC than the unfilled control. The combination graft with substance P and silk fibroin scaffold showed a faster graft degradation than with a silk fibroin scaffold only.