• Title/Summary/Keyword: Scaffold

Search Result 650, Processing Time 0.031 seconds

Development of Scaffold Fabrication System using Multi-axis RP Software Technique (다축 RP 소프트웨어 기술을 이용한 스캐폴드 제조 장비 개발)

  • Park, Jung-Whan;Lee, Jun-Hee;Cho, Hyeon-Uk;Lee, Su-Hee;Park, Su-A;Kim, Wan-Doo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.33-40
    • /
    • 2012
  • The scaffold serves as 3D substrate for the cells adhesion and mechanical support for the newly grown tissue by maintaining the 3D structure for the regeneration of tissue and organ. In this paper, we proposed integrated scaffold fabrication system using multi-axis rapid prototyping (RP) technology. It can fabricate various types of scaffolds: arbitrary sculptured shape, primitive shape, and tube shape scaffolds by layered dispensing biocompatible/ biodegradable polymer strands in designated patterns. In order to fabricate the 3D scaffold, we need to generate the plotting path way for the scaffold fabrication system. We design a data processing program - scaffold plotting software, which can convert the 3D STL file, primitive and tube model images into the NC code for the system. Finally, we fabricated the customized 3D scaffolds with high accuracy using the plotting software and the fabrication system.

Fabrication of Blended PCL/β-TCP Scaffolds by Mixture Ratio of β-TCP using Polymer Deposition System (폴리머 적층 시스템을 이용한 β-TCP 혼합 비율에 따른 PCL/β-TCP 인공지지체의 제작)

  • Ha, Seong-Woo;Kim, Jong Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.791-797
    • /
    • 2014
  • Abstract Scaffold used as a carrier of the cell has been actively conducted using plenty of technology in tissue engineering. ${\beta}$-tricalcium phosphate (${\beta}$-TCP) material has shown good biocompatibility and osteoconductive ability when it was implanted as a bone graft substitute in osseous defect in human and animal studies for bone regeneration. In this study, we fabricated the blended polycaprolactone (PCL) and ${\beta}$-TCP scaffold by the polymer deposition system (PDS). The PCL/${\beta}$-TCP scaffold was fabricated at a temperature of $110^{\circ}C$, pressure of 650 kPa, and scan velocity of 100 mm/sec. The Overall geometry and size of the scaffold were fixed circle type with a diameter of 10 mm and a height of 4 mm. PCL/${\beta}$-TCP scaffold was observed by scanning electron microscopy. Cell attachment and proliferation of the scaffold containing 30 wt% ${\beta}$-TCP was superior to those containing 10 wt% and 20 wt% ${\beta}$-TCP.

Cross-Linked Collagen Scaffold from Fish Skin as an Ideal Biopolymer for Tissue Engineering

  • Biazar, Esmaeil;Kamalvand, Mahshad;Keshel, Saeed Heidari;Pourjabbar, Bahareh;Rezaei-Tavirani, Mustafa
    • Korean Journal of Materials Research
    • /
    • v.32 no.4
    • /
    • pp.186-192
    • /
    • 2022
  • Collagen is one of the most widely used biological materials in medical design. Collagen extracted from marine organisms can be a good biomaterial for tissue engineering applications due to its suitable properties. In this study, collagen is extracted from fish skin of Ctenopharyngodon Idella; then, the freeze drying method is used to design a porous scaffold. The scaffolds are modified with the chemical crosslinker N-(3-Dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC) to improve some of the overall properties. The extracted collagen samples are evaluated by various analyzes including cytotoxicity test, SDS-PAGE, FTIR, DSC, SEM, biodegradability and cell culture. The results of the SDS-PAGE study demonstrate well the protein patterns of the extracted collagen. The results show that cross-linking of collagen scaffold increases denaturation temperature and degradation time. The results of cytotoxicity show that the modified scaffolds have no toxicity. The cell adhesion study also shows that epithelial cells adhere well to the scaffold. Therefore, this method of chemical modification of collagen scaffold can improve the physical and biological properties. Overall, the modified collagen scaffold can be a promising candidate for tissue engineering applications.

A Study on Fabrication of 3D Dual Pore Scaffold by Fused Deposition Modeling and Salt-Leaching Method (열 용해 적층법과 염 침출법을 이용한 3 차원 이중 공 인공지지체 제작에 관한 연구)

  • Shim, Hae-Ri;Kim, Jong Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.12
    • /
    • pp.1229-1235
    • /
    • 2015
  • Scaffold fabrication technology using a 3D printer was developed for damaged bone tissue regeneration. A scaffold for bone tissue regeneration application should be biocompatible, biodegradable, and have an adequate mechanical strength. Moreover, the scaffold should have pores of satisfactory quantity and interconnection. In this study, we used the polymer deposition system (PDS) based on fused deposition modeling (FDM) to fabricate a 3D scaffold. The materials used were polycaprolactone (PCL) and alginic acid sodium salt (sodium alginate, SA). The salt-leaching method was used to fabricate dual pores on the 3D scaffold. The 3D scaffold with dual pores was observed using SEM-EDS (scanning electron microscope-energy dispersive spectroscopy) and evaluated through in-vitro tests using MG63 cells.

In Vitro and In Vivo Evaluation of Composite Scaffold of BCP, Bioglass and Gelatin for Bone Tissue Engineering

  • Kim, Woo Seok;Nath, Subrata Deb;Bae, Jun Sang;Padalhin, Andrew;Kim, Boram;Song, Myeong Jin;Min, Young Ki
    • Korean Journal of Materials Research
    • /
    • v.24 no.6
    • /
    • pp.310-318
    • /
    • 2014
  • In this experiment, a highly porous scaffold of biphasic calcium phosphate (BCP) was prepared using the spongereplica method. The BCP scaffold was coated with 58S bioactive glass (BG) and sintered for a second time. The resulting scaffold was coated with gelatin (Gel) and cross-linked with [3-(3-dimethyl aminopropyl) carbodiimide] and N-Hydroxysuccinamide (EDC-NHS). The initial average pore size of the scaffold ranged from 300 to $700{\mu}m$, with more than 85 % porosity. The coating of BG and Gel had a significant effect on the scaffold-pore size, decreasing scaffold porosity while increasing mechanical strength. The material and surface properties were evaluated by means of several experiments involving scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and X-ray diffraction (XRD). Cytotoxicity was evaluated using MTT assay and confocal imaging of MC3T3-E1 pre-osteoblast cells cultured in vitro. Three types of scaffold (BCP, BCP-BG and BCP-BG-Gel) were implanted in a rat skull for in vivo evaluation. After 8 weeks of implantation, bone regeneration occurred in all three types of sample. Interestingly, regeneration was found to be greater (geometrically and physiologically) for neat BCP scaffolds than for two other kinds of composite scaffolds. However, the other two types of scaffolds were still better than the control (i.e., defect without treatment).

BCP/PCL scaffold의 표면개질을 위한 실리콘, 카르복실기, fibronectin 코팅 및 생체적합성에 관한 연구

  • Gwak, Gyeong-A;Kim, Yeong-Hui;Kim, Min-Seong;Park, Min-Ju;Jyoti, Anirban;Byeon, In-Seon;Lee, Byeong-Taek;Song, Ho-Yeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.43.1-43.1
    • /
    • 2010
  • 조직공학의 중요한 요소로 작용하는 scaffold는 여러 가지 필수적인 조건들을 만족시켜야 한다. 대표적인 특징들로는 (1)생분해성 및 비독성, (2)넓은 표면적을 갖는 상호 연결된 내부 다공성 구조, (3)구조적 안정성, (4)세포부착 기질의 제공, (5)낮은 면역 반응성, (6)혈전 형성 억제, (7)친수성, (8)생체 기능성 등을 들 수 있다. 이러한 scaffold가 갖추어야 할 특성 중에서 세포 부착 기질 제공을 위하여 scaffold에 표면 개질을 통한 기능기를 도입하였다. 본 연구에서는 BCP scaffold의 구조적 안정성 부여를 위하여 PCL(polycaprolactone)을 infiltration 하였다. PCL은 소수성의 특징을 갖고 있어 세포와 상호작용 할 수 있는 생물학적 반응기가 없기 때문에 세포와의 친화성이 떨어진다. 세포의 친화성을 높여주기 위해 실리콘의 전구체인 TEOS(tetraethly orthosilicate)를 코팅하고, 그 위에 카복실기(carboxylic acid group)를 도입하였다. 또한 세포의 고정화를 높여주기 위해 fibronectin을 코팅하여 BCP/PCL scaffold의 세포 친화성을 높여주었다. 이와 같이 제조된 고기능성 BCP/PCL scaffold의 내부 구조와 특성을 Micro-CT로 확인하였고, 또한 실리콘 코팅 여부를 확인하기 위하여 SEM-EDS를 통해 관찰하였으며, FT-IR 관찰을 통해 카복실기 도입 여부를 확인 하였다. 또한 생체적합성 평가를 위해 MTT assay, 조골세포의 부착에 미치는 영향을 관찰하기 위해 SEM, 조골세포의 유전자 발현에 미치는 영향을 관찰하기 위해 RT-PCR을 통해 확인 하였다.

  • PDF

Acrylic Acid-Grafted Hydrophilic Electrospun Nanofibrous Poly(L-lactic acid) Scaffold

  • Park, Kwi-Deok;Jung, Hyun-Jung;Kim, Jae-Jin;Ahn, Kwang-Duk;Han, Dong-Keun;Ju, Young-Min
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.552-558
    • /
    • 2006
  • Biodegradable nanofibrous poly(L-lactic acid) (PLLA) scaffold was prepared by an electrospinning process for use in tissue regeneration. The nanofiber scaffold was treated with oxygen plasma and then simultaneously in situ grafted with hydrophilic acrylic acid (AA) to obtain PLLA-g-PAA. The fiber diameter, pore size, and porosity of the electrospun nanofibrous PLLA scaffold were estimated as $250\sim750nm,\;\sim30{\mu}m$, and 95%, respectively. The ultimate tensile strength was 1.7 MPa and the percent elongation at break was 120%. Although the physical and mechanical properties of the PLLA-g-PAA scaffold were comparable to those of the PLLA control, a significantly lower contact angle and significantly higher ratio of oxygen to carbon were notable on the PLLA-g-PAA surface. After the fibroblasts were cultured for up to 6 days, cell adhesion and proliferation were much improved on the nanofibrous PLLA-g-PAA scaffold than on either PLLA film or unmodified nanofibrous PLLA scaffold. The present work demonstrated that the applications of plasma treatment and hydrophilic AA grafting were effective to modify the surface of electrospun nanofibrous polymer scaffolds and that the altered surface characteristics significantly improved cell adhesion and proliferation.

Fabrication and Characterization of Ag-coated BCP Scaffold Derived from Sponge Replica Process (스폰지 복제법을 이용한 Ag 코팅 BCP 지지체의 제조 및 평가)

  • Kim, Min-Sung;Kim, Young-Hee;Song, Ho-Yeon;Min, Young-Ki;Lee, Byong-Taek
    • Korean Journal of Materials Research
    • /
    • v.20 no.8
    • /
    • pp.418-422
    • /
    • 2010
  • As a starting material, BCP (biphasic calcium phosphate) nano powder was synthesized by a hydrothermal microwave-assisted process. A highly porous BCP scaffold was fabricated by the sponge replica method using 60 ppi (pore per inch) of polyurethane sponge. The BCP scaffold had interconnected pores ranging from $100\;{\mu}m$ to $1000\;{\mu}m$, which were similar to natural cancellous bone. To realize the antibacterial property, a microwave-assisted nano Ag spot coating process was used. The morphology and distribution of nano Ag particles were different depending on the coating conditions, such as concentration of the $AgNO_3$ solution, microwave irradiation times, etc. With an increased microwave irradiation time, the amount of coated nano Ag particles increased. The surface of the BCP scaffold was totally covered with nano Ag particles homogeneously at 20 seconds of microwave irradiation time when 0.6 g of $AgNO_3$ was used. With an increased amount of $AgNO_3$ and irradiation time, the size of the coated particles increased. Antibacterial activities of the solution extracted from the Ag-coated BCP scaffold were examined against gram-negative (Escherichia coli) and gram-positive bacteria (Staphylococcus aureus). When 0.6 g of $AgNO_3$ was used for coating the Ag-coated scaffold, it showed higher antibacterial activities than that of the Ag-coated scaffold using 0.8 g of $AgNO_3$.

Development of Biomimetic Scaffold for Tissue Engineering (조직공학을 위한 생체모사용 스캐폴드 개발)

  • Park, Su-A;Lee, Jun-Hee;Kim, Wan-Doo
    • Elastomers and Composites
    • /
    • v.44 no.2
    • /
    • pp.106-111
    • /
    • 2009
  • Tissue engineering is a research field for artificial substitutes to improve or replace biological functions. Scaffolds play a important role in tissue engineering. Scaffold porosity and pore size provide adequate space, nutrient transportation and cell penetration throughout the scaffold structure. Scaffold structure is directly related to fabrication methods. This review will introduce the current technique of 3D scaffold fabrication for tissue engineering. The conventional technique for scaffold fabrication includes salt leaching, gas foaming, fiber bonding, phase seperation, melt moulding, and freeze drying. These conventional scaffold fabrication has the limitations of cell penetration and interconnectivity. In this paper, we will present the solid freeform fabrication (SFF) such as stereolithography (SLA), selective laser sintering (SLS), and fused deposition modeling (FDM), and 3D printing (3DP).

Effects of proanthocyanidin, a crosslinking agent, on physical and biological properties of collagen hydrogel scaffold

  • Choi, Yoorina;Kim, Hee-Jin;Min, Kyung-San
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.4
    • /
    • pp.296-303
    • /
    • 2016
  • Objectives: The purpose of the present study was to evaluate the effects of proanthocyanidin (PAC), a crosslinking agent, on the physical properties of a collagen hydrogel and the behavior of human periodontal ligament cells (hPDLCs) cultured in the scaffold. Materials and Methods: Viability of hPDLCs treated with PAC was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The physical properties of PAC treated collagen hydrogel scaffold were evaluated by the measurement of setting time, surface roughness, and differential scanning calorimetry (DSC). The behavior of the hPDLCs in the collagen scaffold was evaluated by cell morphology observation and cell numbers counting. Results: The setting time of the collagen scaffold was shortened in the presence of PAC (p < 0.05). The surface roughness of the PAC-treated collagen was higher compared to the untreated control group (p < 0.05). The thermogram of the crosslinked collagen exhibited a higher endothermic peak compared to the uncrosslinked one. Cells in the PAC-treated collagen were observed to attach in closer proximity to one another with more cytoplasmic extensions compared to cells in the untreated control group. The number of cells cultured in the PAC-treated collagen scaffolds was significantly increased compared to the untreated control (p < 0.05). Conclusions: Our results showed that PAC enhanced the physical properties of the collagen scaffold. Furthermore, the proliferation of hPDLCs cultured in the collagen scaffold crosslinked with PAC was facilitated. Conclusively, the application of PAC to the collagen scaffold may be beneficial for engineering-based periodontal ligament regeneration in delayed replantation.