• Title/Summary/Keyword: Scaffold

Search Result 659, Processing Time 0.03 seconds

Fabrication and Characterization of Porous TCP coated Al2O3 Scaffold by Polymeric Sponge Method

  • Sarkar, Swapan Kumar;Kim, Young-Hee;Kim, Min-Sung;Min, Young-Ki;Yang, Hun-Mo;Song, Ho-Yeon;Lee, Byong-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.10
    • /
    • pp.579-583
    • /
    • 2008
  • A porous $Al_2O_3$, scaffold coated with tricalcium phosphate(TCP) was fabricated by replica method using polyurethane(PU) foam as a fugitive material. Successive coatings of $Al_2O_3$ and hydroxyapatite(HAp) were applied via dip coating onto polyurethane foam, which has a slender and well interconnected network. A porous structure was obtained after sequentially burning out the foam and then sintering at $1500^{\circ}C$. The HAp phase was changed to TCP phase at high temperature. The scaffold showed excellent interconnected porosity with pore sizes ranging from $300{\sim}700{\mu}m$ in diameter. The inherent well interconnected structural feature of PU foam remained intact in the fabricated porous scaffold, where the PU foam material was entirely replaced by $Al_2O_3$ and TCP through a consecutive layering process. Thickness of the $Al_2O_3$ base and the TCP coating was about $7{\sim}10{\mu}m$ each. The TCP coating was homogeneously dispersed on the surface of the $Al_2O_3$ scaffold.

A Study on Fabrication of 3D Porous Scaffold Combined with Polymer Deposition System and a Salt Leaching Method (폴리머 적층 시스템과 염 침출법을 결합한 3차원 다공성 인공지지체 제작)

  • Shim, Hae-Ri;Sa, Min-Woo;Kim, Jong Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.86-92
    • /
    • 2016
  • In this study, we used a polymer deposition system, based on fused deposition modeling, to fabricate the 3D scaffold and then fabricated micro-pores on a 3D scaffold using a salt leaching method. Materials included polycaprolactone (PCL) and sodium chloride (NaCl). The 3D porous scaffolds were fabricated according to blending ratio such as PCL (70 wt%)/NaCl (30 wt%) and PCL (50 wt%)/NaCl (50 wt%). The 3D porous scaffolds were observed by scanning electron microscopy. The results showed that 3D porous scaffolds had a deposition width of $500{\mu}m$, contained a pore size of $500{\mu}m$ and below $100{\mu}m$. To evaluate the 3D porous scaffolds for bone tissue engineering, we carried out the cell proliferation experiment using a CCK-8 and a mechanical strength test using a universal testing machine. In summary, the 3D porous scaffold was found to be suitable for cancellous bone of human in accordance with the result of in-vitro cell proliferation and mechanical strength. Thus, a 3D porous scaffold could be a promising approach for effective bone regeneration.

Fabrication of Tissue Engineered Intervertebral Disc Using Enable 3D bio-printing and Scaffod-Free technologies (3D 바이오프린팅과 무지지체 조직공학 기술 기반 추간판 복합 조직 제작)

  • Kim, Byeong Kook;Park, Jinho;Park, Sang-Hyug
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.22-29
    • /
    • 2018
  • Intervertebral disc(IVD) mainly consists of Annulus fibrosus(AF) and Nucleus pulposus(NP), playing a role of distributing a mechanical load on vertebral body. IVD tissue engineering has been developed the methods to achieve anatomic morphology and restoration of biological function. The goal of present study is to identify the possibilities for creating a substitute of IVD the morphology and biological functions are the same as undamaged complete IVD. To fabricate the AF and NP combine biphasic IVD tissue, AF tissue scaffolds have been printed by 3D bio-printing system with natural biomaterials and NP tissues have been prepared by scaffold-free culture system. We evaluated whether the combined structure of 3D printed AF scaffold and scaffold-free NP tissue construct could support the architecture and cell functions as IVD tissue. 3D printed AF scaffolds were printed with 60 degree angle stripe patterned lamella structure(the inner-diameter is 5mm, outer-diameter is 10 mm and height is 3 mm). In the cytotoxicity test, the 3D printed AF scaffold showed good cell compatibility. The results of histological and immunohistochemical staining also showed the newly synthesized collagens and glycosaminoglycans, which are specific makers of AF tissue. And scaffold-free NP tissue actively synthesized glycosaminoglycans and type 2 collagen, which are the major components of NP tissue. When we combined two engineered tissues to realize the IVD, combined biphasic tissues showed a good integration between the two tissues. In conclusion, this study describes the fabrication of Engineered biphasic IVD tissue by using enable techniques of tissue engineering. This fabricated biphasic tissue would be used as a model system for the study of the native IVD tissue. In the future, it may have the potential to replace the damaged IVD in the future.

Effects of Extracellular Stimulation of Different Niche Condition on the Transcriptional Regulation of Matrix Metalloproteinase Genes in the Mouse Embryonic Stem Cells

  • Yun, Jung Im;Kim, Min Seong;Lee, Seung Tae
    • Reproductive and Developmental Biology
    • /
    • v.37 no.2
    • /
    • pp.79-83
    • /
    • 2013
  • Matrix metalloproteinases (MMPs) have been known to affect to cell migration, proliferation, morphogenesis and apoptosis by degrading the extracellular matrix. In the previous studies, undifferentiated mouse embryonic stem cells (ESCs) were successfully proliferated inside the extracellular matrix (ECM) analog-conjugated three-dimensional (3D) poly ethylene glycol (PEG)-based hydrogel. However, there is no report about MMP secretion in ESCs, which makes it difficult to understand and explain how ESCs enlarge space and proliferate inside 3D PEG-based hydrogel constructed by crosslinkers containing MMP-specific cleavage peptide sequence. Therefore, we investigated what types of MMPs are released from undifferentiated ESCs and how extracellular signals derived from various niche conditions affect MMP expression of ESCs at the transcriptional level. Results showed that undifferentiated ESCs expressed specifically MMP2 and MMP3 mRNAs. Transcriptional up-regulation of MMP2 was caused by the 3D scaffold, and activation of integrin inside the 3D scaffold upregulated MMP2 mRNAs synergistically. Moreover, mouse embryonic fibroblasts (MEFs) on 2D matrix and 3D scaffold induced upregulation of MMP3 mRNAs, and activation of integrins through conjugation of extracellular matrix (ECM) analogs with 3D scaffold upregulated MMP3 mRNAs synergistically. These results suggest that successful proliferation of ESCs inside the 3D PEG-based hydrogel may be caused by increase of MMP2 and MMP3 expression resulting from 3D scaffold itself as well as activation of integrins inside the 3D PEG-based scaffold.

Periodontal tissue engineering by hPDLF seeding on scaffold (Scaffold상에 식립한 사람치주인대섬유모세포를 통한 치주조직공학)

  • Kim, Seong Sin;Kim, Byung-Ock;Park, Joo-Cheol;Jang, Hyun-Seon
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.3
    • /
    • pp.757-765
    • /
    • 2006
  • Human periodontal ligament fibroblasts (hPDLF) are very important for curing the periodontal tissue because they can be differentiated into various cells. A tissue engineering approach using a cell-scaffold is essential for comprehending today's periodontal tissue regeneration procedure. This study examined the possibility of using an acellular dermal matrix as a scaffold for human periodontalligament fibroblast (hPDLF). The hPDLF was isolated from the middle third of the root of periodontally healthy teeth extracted for orthodontic reasons. The cells were cultured in a medium containing Dulbecco's modified Eagle medium supplemented with 10% fetal bovine serum at $37^{\circ}C$ in humidified air with 5% $CO_2$. The acellular dermal matrix(ADM) was provided by the US tissue banks(USA). Second passage cells were used in this study. The hPDLF cells were cultured with the acellular dermal matrix for 2 days, and the dermal matrix cultured by the hPDLF was transferred to a new petri dish and used as the experimental group. The control group was cultured without the acellular dermal matrix, The control and experimental cells were cultured for six weeks. The hPDLF cultured on the acellular dermal matrix was observed by Transmission Electron microscopy (TEM). Electron micrography shows that the hPDLF was proliferated on the acellular dermal matrix. This study suggests that the acellular dermal matrix can be used as a scaffold for hPDLF.

Biodisc Tissue-Engineered Using PLGA/DBP Hybrid Scaffold (DBP/PLGA 하이브리드 담체를 이용한 조직공학적 바이오 디스크 개발)

  • Ko, Youn-Kyung;Kim, Soon-Hee;Jeong, Jae-Soo;Ha, Hyun-Jung;Yoon, Sun-Jung;Rhee, John-M.;Kim, Moon-Suk;Lee, Hai-Bang;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.14-19
    • /
    • 2007
  • Demineralized bone particle (DBP) has been used as one of the powerful inducers of bone and cartilage tissue specialization. In this study, we fabricated DBP/PLGA scaffold for tissue engineered disc regeneration. We manufactured dual-structured scaffold to compose inner cylinder and outer doughnut similar to nature disc tissue. The DBP/PLGA scaffold was characterized by porosity, wettability, and water uptake ability. We isolated and cultured nucleus pulposus (NP) and annulus fibrosus (AF) cells from rabbit intervertebral disc. We seeded NP cells into the inner core of the hybrid scaffold and AF cells into the outer portion of it. Cellular viability and proliferation were assayed by 3-(4,5-dimethylthiazole-2-yl) -2,5- diphenyltetrazolium -bromide (MTT) test. PLGA and PLGA/DBP scaffolds were implanted in subcutaneous of athymic nude mouse to observe the formation of disc-like tissue in vivo. And then we observed change of morphology and hematoxylin and eosin (H&E). Formation of disc-like tissue was better DBP/PLGA hybrid scaffold than control. Specially, we confirmed that scaffold impregnated 20 and 40% DBP affected to proliferation of disc cell and formation of disc-like tissue.

Fabrication of a Dual-structured Biomaterial Combining Collagen and Fibrinogen (콜라겐과 피브리노겐을 합성한 이중구조 생체재료의 제작)

  • Hong-Moon Jung
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.993-999
    • /
    • 2023
  • Bio materials of fibrinogen and collagen are widely used in tissue regeneration engineering. In this study, I aim to create a new dual-structure support using these two materials. Strategically, tissue regeneration takes priority over blood vessel regeneration, so by forming a fibrinogen support that helps blood vessel formation on the outside of the double support and placing collagen, which is more effective in tissue regeneration, in the center, a synergistic effect in new tissue regeneration is expected. Although these two materials have been used interchangeably in previous studies, there has been no report yet on making a support through the formation of a support structure for the core system. Therefore, the core of this study, the double scaffold, is to propose a method for manufacturing a core structure with a collagen scaffold on the inside and fibrinogen on the outside. The experimental results showed that the fibrinogen located on the outside of the scaffold resulted in rapid biodegradation and drug release due to strategic biodegradation of the dual structure scaffold. On the other hand, collagen scaffolds were found to be able to maintain drug release time relatively longer than fibrinogen scaffolds. In conclusion, it is believed that applying the method of creating a double scaffold will have a synergistic effect on defective tissue regeneration.