• Title/Summary/Keyword: Sb-based materials

Search Result 102, Processing Time 0.024 seconds

Structural and Optical Characteristics of ChalcogenideGe_Sb_Se for Basic Aspheric Lens Design (비구면렌즈 설계를 위한 칼코게나이드 Ge-Sb-Se계 구조적, 광학적 특성 연구)

  • Ko, Jun Bin;Myung, Tae Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.133-137
    • /
    • 2014
  • The recent development of electro-optic devices and anticorrosion media has made it necessary investigate infrared optical systems with solid-solid interfaces of materials with amorphous characteristics. One of the most promising classes of materials for these purposes seems to be chalcogenide glasses, which are based on the Ge_Sb_Se system, have drawn much attention because of their use in preparing optical lenses and fibers that are transparent in the range of 3-12 um. In this study, a standard melt-quenching technique was used to prepare amorphous Ge_Sb_Sechalcogenideto be used in the design and manufacture of infrared optical products. The results of structural, optical, and surface roughness analyses of high purity Ge_Sb_Sechalcogenide glasses after various annealing processes reported.

Studies on Incombustibility Improvement of EPDM-based Insulation with Al(OH)3 and Sb2O3 (EPDM계 내열재의 Al(OH)3와 Sb2O3 함량에 따른 난연 효과 연구)

  • Kim, Jinyong;Lim, Daehyun;Lee, Wonbok
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.4
    • /
    • pp.36-41
    • /
    • 2013
  • In order to improve incombustibility of EPDM(Ethylene propylene diene monomer)-based rubber, inorganic materials as $Al(OH)_3$ and $Sb_2O_3$ were added. The mechanical and thermal properties have been measured for vulcanized rubber loaded with different concentrations of $Al(OH)_3$ and $Sb_2O_3$. As inorganic material contents increases from 5phr to 30phr, the specific gravity and hardness increase while elongation at break decreases. This study performed incombustibility test and thermal analysis through TGA(Thermogravimetric Analyzer). As a results, incombustible and thermal properties of EPDM-based rubber were improved as $Al(OH)_3$ and $Sb_2O_3$ contents increase.

Joining and properties of electrode for CoSb3 thermoelectric materials prepared by a spark plasma sintering method (방전 플라즈마 소결법을 이용한 CoSb3계 열전재료의 전극 접합 및 특성)

  • Kim, K.H.;Park, J.S.;Ahn, J.P.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.1
    • /
    • pp.30-34
    • /
    • 2010
  • $CoSb_3$-based skutterudite compounds are promising candidates as thermoelectric (TE) materials used in intermediate temperature region. In this study, sintering of $CoSb_3$ powder and joining of $CoSb_3$ to copper-molybdenum electrode have been simultaneously performed by spark plasma sintering technique. The Ti foil was used for preventing the diffusion of copper into $CoSb_3$ and the Cu : Mo = 3 : 7 Vol. ratio composition was selected by the consideration of thermal expansion coefficients. The insertion of Ti interlayer between Cu-Mo and $CoSb_3$ was effective to join $CoSb_3$ to Cu-Mo by forming an intermediate layer of $TiSb_2$ at the Ti-$CoSb_3$ boundary. However, the formation of TiSb and TiCoSb intermediate layers deteriorated the joining properties by the generation of cracks in the interface of intermediate layer/$CoSb_3$ and intermediate/intermediate layers.

Square Wave Voltammetry in Cathode Ray Tube Glass Melt Containing Different Polyvalent Ions (서로 다른 다가이온을 함유한 음극선관 전면유리 용융체의 Square Wave Voltammetry)

  • Kim, Ki-Dong;Kim, Hyo-Kwang;Kim, Young-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.6 s.301
    • /
    • pp.297-302
    • /
    • 2007
  • With aids of square wave voltammetry (SWV) the redox behavior for various combination of polyvalent ions (Sb+Fe, Sb+Zn, Sb+Ce+Ti+Zn) was investigated in alkali-alkaline earth-silica CRT (Cathode Ray Tube) glass melts. The current-potential curve so called voltammogram was produced at temperature range of 1400 to $1000^{\circ}C$ under the scanned potential between 0 and -800 mV at 100 Hz. In the case of the Sb+Fe and Sb+Zn doped melts, peak for $Sb^{3+}/Sb^0$ shown voltammogram was shifted to negative direction comparing to the only Sb doped melts. However, according to voltammogram of Sb+Ce+Ti+Zn doped melt, Ti and Ce except Zn had hardly any influence on the redox reaction of Sb. Based on the temperature dependence of the peak potential, standard enthalpy (${\Delta}H^0$) and standard entropy (${\Delta}S^0$) for the reduction of $Fe^{3+}$ to $Fe^{2+}$, $Sb^{3+}$ to $Sb^0$, $Zn^{2+}$ to $Zn^0$ and $Ti^{2+}$ to $Ti^0$ in each polyvalent ion combination of CRT glass melts were calculated.

Optical Transmission Characteristics of Tellurium-based Phase-change Chalcogenide Thin Films (Tellurium계 상변화 칼코겐화물 박막의 광투과 특성)

  • Yoon, Hoi Jin;Bang, Ki Su;Lee, Seung-Yun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.7
    • /
    • pp.408-413
    • /
    • 2016
  • The dielectric thin films applied to multi-colored semitransparent thin film solar cells have been extensively studied. In this work, we prepared GeSbTe and GeTe chalcogenide thin films using magnetron sputtering, and investigated their optical and phase-change properties to replace the dielectric films. The changes of surface morphology, sheet resistance, and X-ray diffraction of the Te-based chalcogenide films support the fact that the amorphous stability of GeTe films is superior to that of GeSbTe films. While both amorphous GeSbTe and GeTe films thinner than 30 nm have optical transparency between 5% and 60%, GeTe films transmit more visible light than GeSbTe films. It is confirmed by computer simulation that the color of semitransparent silicon thin film solar cells can be adjusted with the addition of GeSbTe or GeTe films. Since it is possible to adjust the contrast of the solar cells by exploiting the phase-change property, the two kinds of chalcogenide films are anticipated to be used as an optical layer in semitransparent solar cells.

Joining Properties of CoSb3/Al/Ti/CuMo by Spark Plasma Sintering Process (방전플라즈마 소결 공정을 이용한 CoSb3/Al/Ti/CuMo 접합 특성)

  • Kim, Min Suk;Ahn, Jong Pil;Kim, Kyoung Hun;Kim, Kyung Ja;Park, Joo Seok;Seo, Won Seon;Kim, Hyung Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.549-553
    • /
    • 2014
  • $CoSb_3$-based skutterudite compounds are candidate materials for thermoelectric power generation in the mid-temperature range (600 - 900 K) because their thermoelectric properties can be enhanced by doping and filling. The joining property of thermoelectric module electrodes containing thermoelectric materials is of great importance because it can dominate the efficiency of the thermoelectric module. This study examined the properties of $CoSb_3$/Al/Ti/CuMo joined by the spark plasma sintering technique. Titanium thin foil was used to prevent the diffusion of copper into $CoSb_3$ and Aluminum thin foil was used to improve the adhesion between $CoSb_3$ and Ti. The insertion of an Aluminum interlayer between the Ti and $CoSb_3$ was effective for joining $CoSb_3$ to Ti by forming an intermediate layer at the Al-$CoSb_3$ boundary without any micro cracks. Specifically, the adhesion strength of the Ti/Al/$CoSb_3$ joining interface showed a remarkable improvement compared with our previous results, without deterioration of electrical property in the interface.

Redox Equilibrium of Antimony by Square Wave Voltammetry Method in CRT Display Glass Melts

  • Jung, Hyun-Su;Kim, Ki-Dong;Kim, Hyo-Kwang;Kim, Young-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.1 s.296
    • /
    • pp.1-5
    • /
    • 2007
  • Fining and homogenization of melts during batch melting is closely related to the redox reaction of polyvalent element M (M: Sb, As etc), $M^{(x+n)+}+n/2O^{2-}{\rightarrow}M^{x+}+n/4O_2$. In this study, square wave voltammetry (SWV) measurements were performed to examine the redox behavior of an antimony ion in cathode ray tube (CRT) glass melts. According to results, well-separated two peaks are shown at low temperature while only one peak is shown at high temperature in voltammograms, which reveals that redox reaction of antimony consist of two steps: $Sb^{5+}/Sb^{3+}\;and\;Sb^{3+}/Sb^0$, depending on the temperature. Based on the peak potential shown in the voltammogram, the thermodynamic data and the redox ratio for two redox couple were determined.

Growing High-Quality Ir-Sb Nanostructures by Controlled Electrochemical Deposition

  • Nisanci, Fatma Bayrakceken
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.165-171
    • /
    • 2020
  • The electrochemical preparation and spectroscopic characterisation of iridium-antimony (Ir-Sb) species is important owing to their potential applications as nanostructure materials. Nanostructures, i.e. nanoflower and nanodisk, of Ir-Sb were electrodeposited on conductive substrates using a practical electrochemical method based on the simultaneous underpotential deposition (UPD) of Ir and Sb from the IrCl3 and Sb2O3 at a constant potential. Electrochemical UPD mechanism of Ir-Sb was studied using cyclic voltammetry and potential-controlled electrochemical deposition techniques. Herein, X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, X-ray photoelectron and Raman spectroscopy were used to determine the morphological and structural properties of the electrochemically-synthesised Ir-Sb nanostructures.