• Title/Summary/Keyword: Sb/RE

Search Result 55, Processing Time 0.026 seconds

Characterization of (Na,K)$NbO_3$-Based Ph-free Piezoelectrics Doped with Cu-oxides ((Na,K)$NbO_3$ 계의 무연 압전체에서 cu 산화물 도핑에 따른 특성 평가)

  • Lee, Yun-Gee;Ryu, Sung-Lim;Ur, Soon-Chul;Kweon, Soon-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.324-324
    • /
    • 2010
  • 최근에는 압전체의 환경오염 문제의 해결 및 가격경쟁력을 갖추기 위해서 비납계 압전체에 대한 연구가 활발히 진행되고 있다. (Na,K)$NbO_3$ 계는 페로브스카이트 구조를 가지는 비납계 세라믹스로 현재 가장 많이 연구되고 있는 물질 중의 하나이다. 본 연구에서는 압전성이 우수한 $(Na_{0.44}K_{0.52}Li_{0.04})(Nb_{0.9}Ta_{0.04}Sb_{0.06})O_3$ 조성에 CuO, $Cu_2O$ 등의 Cu 산화물을 첨가하였을 때의 전기기계결합계수, 기계적품질계수, 비유전율, 압전전하상수, 문극-전계 이력곡선 (P-E hysteresis curve) 등을 변화를 평가하고자 하였다.

  • PDF

Antimony Content of Natural Mineral Water in Korean Market and Migration into Water from Bottle Material (국내유통 먹는샘물 중의 안티몬 함량 및 용기 이행 특성)

  • Huh, Yujeong;Yang, Mihee;Cho, Yangseok;Ahn, Kyunghee;Lee, Younhee;Chung, Hyunmee;Kwon, Ohsang;Park, Juhyun
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.2
    • /
    • pp.199-205
    • /
    • 2014
  • The knowledge on the migration of antimony (Sb) from PET bottles into the water is of greate concern. Antimony in all bottled water marketed in korea and in raw water was analyzed. The detection rate of antimony in total bottled water was 88 % and 100% in PET (Polyethylene terephthalate, PET), 55% in PC (Polycarbonate, PC) bottled water. 55% of raw water contained antimony. The average concentration of Sb in PET bottled water was $0.39{\mu}g/L$, higher than PC bottles ($0.20{\mu}g/L$) and the raw water ($0.22{\mu}g/L$). The migration of Sb into water that is stored in different conditions (room temperature, $45^{\circ}C$, and direct sunlight exposure) was investigated for 180 days. The migration tendency increased with the storage time and temperature. PET bottles showed a sharp increase of Sb concentration at $45^{\circ}C$, but there was no differences between the room temperature and sunlight exposure. The Sb migration in all simulated solution(deionized water, 4% acetic acid, and 20% ethanol) also increased with storage time and temperature. The Sb migration values ranged from 0.35 to $0.49{\mu}g/L$ in all simulated solution, which was far below the permissible korean migration level of $40{\mu}g/L$. There was a tendency that the number of re-use of a bottle and the amount of leaching were in inverse proportion.

A Study on the Characteristics of Dielectric and Piezoelectric in (Na,K)$NbO_3$-system Pb-free Piezoelectric Ceramics add ZnO (ZnO를 첨가한 (Na,K)$NbO_3$계 무연 압전 세라믹스의 유전 및 압전 특성에 관한 연구)

  • Ryu, Sung-Lim;Kim, Si-Chul;Lee, Kyung-Sun;Lee, Chung-Ho;Yoo, Ju-Hyun;Kim, Young-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.218-219
    • /
    • 2005
  • In this paper, in order to develop Pb-free piezoelectric ceramics, $[Li_{0.04}(Na_{0.44}K_{0.52})-(Nb_{0.86}Ta_{0.10}Sb_{0.04})]O_3$ ceramic was fabricated with the variation of ZnO addition. Piezoelectric properties of the ceramic were varied with the amount of ZnO addition and showed the maximum kp value at 0.2 wt% ZnO addition. Qm of ZnO added ceramics showed lower values than the non-added ceramics, however, the kp was increased by the addition of ZnO up to 0.2 wt%. At the sintering temperature of 1110$^{\circ}C$ and the calcination temperature of 850$^{\circ}C$, the optimal values of density=473g/$cm^3$, kp=0.473, $\varepsilon_r$=1403 were obtained.

  • PDF

Effect of Ni Additions on the Microstructure, Mechanical Properties, and Electrical Conductivity of Al Alloy

  • Yoo, Hyo-Sang;Kim, Yong-Ho;Kim, Cheol-Woo;Choi, Se-Weon;Son, Hyeon-Taek
    • Korean Journal of Materials Research
    • /
    • v.31 no.12
    • /
    • pp.672-676
    • /
    • 2021
  • In this paper, the effect of Ni (0, 0.5 and 1.0 wt%) additions on the microstructure, mechanical properties and electrical conductivity of cast and extruded Al-MM-Sb alloy is studied using field emission scanning electron microscopy, and a universal tensile testing machine. Molten aluminum alloy is maintained at 750 ℃ and then poured into a mold at 200 ℃. Aluminum alloys are hot-extruded into a rod that is 12 mm in diameter with a reduction ratio of 39:1 at 550 ℃. The addition of Ni results in the formation of Al11RE3, AlSb and Al3Ni intermetallic compounds; the area fraction of these intermetallic compounds increases with increasing Ni contents. As the amount of Ni increases, the average grain sizes of the extruded Al alloy decrease to 1359, 536, and 153 ㎛, and the high-angle grain boundary fractions increase to 8, 20, and 34 %. As the Ni content increases from 0 to 1.0 wt%, the electrical conductivity is not significantly different, with values from 57.4 to 57.1 % IACS.

Microstructures and Electrical Properties of (Na,K)NbO3-Based Piezoceramics Sintered with Glass Frit (유리 분말과 함께 소결한 (Na,K)NbO3계 압전체의 미세구조 및 전기적 특성)

  • Pi, Ji-Hee;Kweon, Soon-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.9
    • /
    • pp.646-650
    • /
    • 2013
  • $(Na,K)NbO_3$-based piezoelectric ceramics were synthesized by a liquid phase sintering method with a selected glass frit. The effects of the content of the glass frit and the sintering temperature on the microstructure and the electrical properties of the samples were investigated. With the 0.1 wt% of glass frit content, $(Na_{0.52}K_{0.44}Li_{0.06})(Nb_{0.84}Ta_{0.10}Sb_{0.06})O_3$ (NKL-NTS) ceramics showed the maximum values of the relative density (99.1%) and the electro-mechanical coupling factor ($k_p$: 0.32) at the sintering temperature of $1,050^{\circ}C$. It might mean that a liquid phase sintering with a suitable glass frit having the lower flow temperature could improve the relative density and the piezoelectric properties.

Determination of Hazardous Metals in Nail Enamel Containing Glitter (글리터를 포함한 네일 에나멜 제품의 유해 금속 분석)

  • Ko, Suk Kyung;Chung, Sam Ju;Park, Young Hye;Park, Ae Sook;Kim, Hyun Jung;Park, Geon Yong;Oh, Young Hee
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.2
    • /
    • pp.103-110
    • /
    • 2017
  • Objectives: This study was performed to provide basic data for the re-establishment of standards (criteria) and analytical methods for hazardous metals in nail enamel. Methods: Ten metals (lead; Pb, arsenic; As, cadminum; Cd, antimony: Sb, cobalt; Co, nikel; Ni, copper; Cu, chromium; Cr, aluminum; Al, and mercury; Hg) were measured in 67 commercial nail enamels containing glitter and/or pearls. The content of hazardous metals (excepting Hg) was determined by using an inductively coupled plasma-optical emission spectrophotometer (ICP-OES) after microwave digestion. Mercury content was measured by a mercury analyzer without any preparation. Results: The detected ranges of the intact samples were as follows: $ND-1.756{\mu}g/g$ for Pb, $ND-1.24{\mu}g/g$ for As, ND for Cd, $ND-20.41{\mu}g/g$ for Sb, $ND-12.36{\mu}g/g$ for Co, $ND-7.908{\mu}g/g$ for Ni, $0.088-79.27{\mu}g/g$ for Cu, $0.281-18.54{\mu}g/g$ for Cr, $13.78-3563{\mu}g/g$ for Al, and $ND-0.044{\mu}g/g$ for Hg. After centrifugation, the detected ranges of supernatant were as follows: $ND-0.435{\mu}g/g$ for Pb, $ND-0.504{\mu}g/g$ for As, ND for Cd, $ND-0.035{\mu}g/g$ for Sb, $ND-13.17{\mu}g/g$ for Co, $ND-0.232{\mu}g/g$ for Ni, $0.117-90.07{\mu}g/g$ for Cu, $0.174-2.787{\mu}g/g$ for Cr, and $9.459-1565{\mu}g/g$ for Al. The results of this analysis showed that the levels of heavy metals such as Pb, As, and Sb were much higher in the intact samples than those of supernatant. Conclusion: In the present study, we found that the levels of hazardous metals were significantly different depending on the status of the presence of glitter. Based on the results, we recommend that the product consumer refrain from prolonged application of nail enamel, avoid biting or chewing the nails, and wear gloves during cooking and washing dishes.

Surface Preparation of III-V Semiconductors

  • Im, Sang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.86.1-86.1
    • /
    • 2015
  • As the feature size of Si-based semiconductor shrinks to nanometer scale, we are facing to the problems such as short channel effect and leakage current. One of the solutions to cope with those issues is to bring III-V compound semiconductors to the semiconductor structures, because III-V compound semiconductors have much higher carrier mobility than Si. However, introduction of III-V semiconductors to the current Si-based manufacturing process requires great challenge in the development of process integration, since they exhibit totally different physical and chemical properties from Si. For example, epitaxial growth, surface preparation and wet etching of III-V semiconductors have to be optimized for production. In addition, oxidation mechanisms of III-V semiconductors should be elucidated and re-growth of native oxide should be controlled. In this study, surface preparation methods of various III-V compound semiconductors such as GaAs, InAs, and GaSb are introduced in terms of i) how their surfaces are modified after different chemical treatments, ii) how they will be re-oxidized after chemical treatments, and iii) is there any effect of surface orientation on the surface preparation and re-growth of oxide. Surface termination and behaviors on those semiconductors were observed by MIR-FTIR, XPS, ellipsometer, and contact angle measurements. In addition, photoresist stripping process on III-V semiconductor is also studied, because there is a chance that a conventional photoresist stripping process can attack III-V semiconductor surfaces. Based on the Hansen theory various organic solvents such as 1-methyl-2-pyrrolydone, dimethyl sulfoxide, benzyl alcohol, and propylene carbonate, were selected to remove photoresists with and without ion implantation. Although SPM and DIO3 caused etching and/or surface roughening of III-V semiconductor surface, organic solvents could remove I-line photoresist without attack of III-V semiconductor surface. The behavior of photoresist removal depends on the solvent temperature and ion implantation dose.

  • PDF

Gas-Phase Technology and Microstructure of Fullerite Films

  • A.S. Berdinsky;Chun, Hui-Gon;Lee, Jing-Hyuk;Song, Yong-Hwa;Yu. V. Shevtsov
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.2
    • /
    • pp.71-75
    • /
    • 2004
  • The technology of $C_{60}$ fullerite films preparation by means of gas-phase deposition and structure of fullerite films are described. A three-channel flow plant was used to obtain fullerite films. The films were deposited in the flow of inert gas under reduced pressure onto a cooled silicon or sapphire substrate placed inside the reaction chamber of the plant. The plant allows one to obtain the films of pure fullerenes and to synthesise the films from fullerene compounds and doped fullerenes. The structure of two types of films were investigated by FE-SEM and SEM techniques: pure fullerite films onto silicon and sapphire substrates as well as compound films were studied by FE-SEM technique. All samples have shown columnar structure with high level of porosity. The synthesis of films composed of fullerene and its compounds for use in electronics is demonstrated to be promising. For example, experiments confirm the possibility to use fullerite films in sensor electronics to produce humidity and thermal sensors. It is also possible to use the sensitivity of these films to isotropic pressure. The experiments with $C_{60}$-Cu-J films have shown quite strong dependence of their resistance on pressure of different sort of medium-gas that could be used in gas-sensitive sensors. The structure and preparation technology of resistive sensor based on fullerite films are described.bed.

Evaluation of Microstructure and Electrical Properties in (Na,K)NbO3-Based Pb-free Piezoelectrics Doped with Various Cu2O Concentration ((Na,K)NbO3계 무연 압전체에서 Cu2O 첨가물의 농도 변화에 따른 미세구조 및 전기적 특성 평가)

  • Lee, Youn-Ki;Ryu, Sung-Lim;Kweon, Soon-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.11
    • /
    • pp.870-875
    • /
    • 2011
  • The $(Na_{0.52}K_{0.44})(Nb_{0.9}Sb_{0.06})O_3-0.04dLiTaO_3$ (NKNS-LT) ceramics with various $Cu_2O$ concentration were prepared by the conventional solid state reaction method. The $Cu_2O$ content was varied in the range of 0.1~0.4 wt%. The effects of Cu on microstructure, crystallographic phase transition, and piezoelectric properties were investigated. The material with perovskite structure had a tetragonal phase (T1) when $Cu_2O$ concentration was less than 0.3 wt% and it transformed to another tetragonal phase (T2) when the $Cu_2O$ amount was greater than 0.3 wt%. The phase boundary between T1 and T2 phases appeared at around 0.3 wt% of $Cu_2O$ concentration. The piezoelectric properties were shown the maximum values at the composition of the phase boundary. The electro-mechanical coupling factor ($k_p$) was 0.42 and the piezoelectric charge constant ($d_{33}$) was 245 pC/N at the 0.3 wt% of $Cu_2O$ concentration.

Energy Efficient Alloy Design in PSN-PMN-PZT Ceramic System for Piezoelectric Transformer Application (고효율 압전 트랜스포머용 PSN-PMN-PZT 조성 설계)

  • Choi Yong-Gil;Ur Soon-Chul;Yoon Man-Soon
    • Korean Journal of Materials Research
    • /
    • v.15 no.12
    • /
    • pp.814-817
    • /
    • 2005
  • In order to enhance energy efficiency in high electric conversion devices such as Power transformers, which need to have high power properties, an alloy design approach in $Pb(Zr,Ti)O_3(PZT)$ base ceramic system was attempted $0.03Pb(Sb_{0.5}Nb_{0.5})O_3-0.03Pb(Mn_{1/3}Nb_{2/3})O_3-(0.94-x)PbTiO_3-xPbZrO_3$[PSN-PMN- PZT] ceramics were synthesized by conventional bulk ceramic processing technique. To improve power properties, the various Zr/Ti ratio was varied ]lear their morphotropic phase boundary (MPB) composition of PSN-PMN-PZT system and their effects on subsequent piezoelectric and dielectric properties for the transformer application at high power were systematically investigated using an impedance analyzer. Microstructure and phase information were characterized using X-ray diffractometer (XRD), a scanning electron microscope (SEM) and others. When the Zr/Ti ratio was 0.415/0.465, the value of $Q_m\;and\;k_p$ were shown to reach to the maximum, indicating that this alloy design can be a feasible composition :or high power transformer.