Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.12.672

Effect of Ni Additions on the Microstructure, Mechanical Properties, and Electrical Conductivity of Al Alloy  

Yoo, Hyo-Sang (Korea Institute of Industrial Technology)
Kim, Yong-Ho (Korea Institute of Industrial Technology)
Kim, Cheol-Woo (Korea Institute of Industrial Technology)
Choi, Se-Weon (Korea Institute of Industrial Technology)
Son, Hyeon-Taek (Korea Institute of Industrial Technology)
Publication Information
Korean Journal of Materials Research / v.31, no.12, 2021 , pp. 672-676 More about this Journal
Abstract
In this paper, the effect of Ni (0, 0.5 and 1.0 wt%) additions on the microstructure, mechanical properties and electrical conductivity of cast and extruded Al-MM-Sb alloy is studied using field emission scanning electron microscopy, and a universal tensile testing machine. Molten aluminum alloy is maintained at 750 ℃ and then poured into a mold at 200 ℃. Aluminum alloys are hot-extruded into a rod that is 12 mm in diameter with a reduction ratio of 39:1 at 550 ℃. The addition of Ni results in the formation of Al11RE3, AlSb and Al3Ni intermetallic compounds; the area fraction of these intermetallic compounds increases with increasing Ni contents. As the amount of Ni increases, the average grain sizes of the extruded Al alloy decrease to 1359, 536, and 153 ㎛, and the high-angle grain boundary fractions increase to 8, 20, and 34 %. As the Ni content increases from 0 to 1.0 wt%, the electrical conductivity is not significantly different, with values from 57.4 to 57.1 % IACS.
Keywords
aluminum; nickel; extrusion; mechanical property; electrical conductivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Y. Murashkin, I. Sabirov, A. E. Medvedev, N. A. Enikeev, W. Lefebvre, R. Z. Valiev and X. Sauvage, Mater. Des., 90, 433 (2016).   DOI
2 S. S. Nayak, M. Wollgarten, J. Banhart, S. K. Pabi and B. S. Murty, Mater. Sci. Eng., A, 527, 2370 (2010).   DOI
3 C. Li, C. Wang, Z.-Z. Yang, P.-K. Ma, M.-W. Ren and H.-Y. Wang, J. Alloys Compd., 869, 159304 (2021).   DOI
4 B. Jiang, H. Wang, D. Yi, Y. Tian, F. Shen, B. Wang, H. Liu and Z. Hu, Mater. Charact., 162, 110184 (2020).   DOI
5 M. Balakrishnan, I. Dinaharan, K. Kalaiselvan and R. Palanivel, J. Mater. Res. Technol., 9, 4356 (2020).   DOI
6 S.-S. Na, Y.-H. Kim, H.-T. Son and S.-H. Lee, Korean J. Mater. Res., 30, 542 (2020).   DOI
7 D. Li, C. Cui, X. Wang, Q. Wang, C. Chen and S. Liu, Mater. Des., 90, 820 (2016).   DOI
8 A. E.Medvedev, M. Y. Murashkin, N. A. Enikeev, R. Z. Valiev, P. D.Hodgson and R. Lapovok, J. Alloys Compd., 745, 696 (2018).   DOI
9 C.-G. Jung, U. Hiroshi, H.-T. Son and S.-H. Lee, Korean J. Mater. Res., 27, 597 (2017).   DOI
10 Q. Zheng, L. Zhang, H. Jiang, J. Zhao and J. He, J. Mater. Sci. Tech., 47, 142 (2020).   DOI
11 A. A. Mogucheva, D. V. Zyabkin and R. O. Kaibyshev, Met. Sci. Heat Treat., 53, 450 (2012).   DOI
12 W. Ding, X. Zhao, T. Chen, H. Zhang, X. Liu, Y. Cheng and D. Lei, J. Alloys Compd., 830, 154685 (2020).   DOI
13 H. Jiang, S. Li, Q. Zheng, L. Zhang, J. He, Y. Song, C. Deng and J. Zhao, Mater. Des., 195, 108991 (2020).   DOI
14 Z. Mao, D. N. Seidman and C. Wolverton, Acta Mater., 59, 3659 (2011).   DOI
15 R. Akhil, O. P. Nath and S. Arul, Mater. Today: Proc., 24, 1042 (2020).   DOI
16 L. Pan, S. Zhang, Y. Yang, N. Gupta, C. Yang, Y. Zhao and Z. Hu, Metall. Mater. Trans. A, 51, 214 (2020).   DOI
17 Z. Cao, G. Kong, C. Che, Y. Wang and H. Peng, J. Rare Earths, 35, 1022 (2017).   DOI
18 J. D. Robson, D. T. Henry and B. Davis, Acta Mater., 57, 2739 (2009).   DOI