• Title/Summary/Keyword: Saturation iron core

Search Result 48, Processing Time 0.028 seconds

Calculation of Equivalent d-q Model Parameters of A Squirrel Cage Induction Motor Using Finite Element Method (유한요소법에 의한 농형유도전동기 d-q 등가모델의 회로정수 산출)

  • Choi, Chong-Sun;Koo, Tae-Man
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.315-317
    • /
    • 1999
  • This paper presents a method for determining of the equivalent d-q model parameters of three-phase squirrel cage induction motors. The method is based on the use of a finite-element field calculation which enables the precise slot geometry to be modelled accurately, and includes the effects of magnetic saturation of iron core. The proposed method can reduce computational costs compared with the method that needs the iterative field analysis to obtain the impedance. It is verified that the circuit inductances are shown as functions of the current.

  • PDF

Fault Current Limiting Characteristics of Resistive Type SFCL using Transformer (변압기를 이용한 저항형 고온초전도 전류제한기의 한류 특성)

  • 임성훈;최효상;고석철;이종화;강형곤;한병성
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.288-290
    • /
    • 2003
  • The transformer is expected to be an essential component of resistive type superconducting fault current limiter (SFCL) for both the increase of voltage ratings in SFCL and the simultaneous quench due to different critical current between HTSC elements. However, for the design to prevent the saturation of iron core and the effective fault current limitation, the analysis for operation of SFCL with consideration for the magnetization characteristics are required. In this paper, the fault current limiting characteristics related with the magnetization ones were investigated through the variation of the ratio of the number of turns in the 1st and the 2nd windings. The proper design condition with variation of the number of turns to make the effective fault current limiting operation could be determined.

  • PDF

The thrust characteristic analysis of multi-separated winding LDM (다중 분할 권선형 LDM의 추력 특성 해석)

  • Kim, Il-Nam;Lee, Sang-Cheol;Koo, Choon-Keun;Kang, Gu-Hong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • This paper describes for new design method to improve respones characteristics of moving-magnet type LDM with volume reduction of slider back iron. To achieve the constant thrust of LDM through restraining saturation at the center core of stator excitation coil, double sided stator winding of LDM is proposed. We constructed new type LDM to prove the validity of design process. Analysis results through measurement and simulation of proposed multi-separated winding LDM were proved excellent in response characteristics and static thrust.

Development of an User-Friendly Designed Characteristics Analysis Program of Permanent-Split Capacitor Single-Phase Induction Motor (사용자 편의성이 향상된 콘덴서 구동형 단상 유도전동기 특성해석 프로그램의 개발)

  • Jung, In-Soung;Kim, Young-Jung;Sung, Ha-Gyeong
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.884-885
    • /
    • 2007
  • This paper presents an window based user-friendly designed characteristics analysis program of permanent-split capacitor single-phase induction motor. For the analysis, equivalent magnetic circuit and symmetrical coordinate method are used. The saturation effect and iron loss of stator and rotor core are considered. The analysis program is made to GUI type which can be used easily by many elementary designer. The accuracy of analysis is verified by comparison with experimental results.

  • PDF

Characteristics of Saturation and Circulating Current Based on Winding and Iron Core Structure of Grid-connected Transformer in Energy Storage System (ESS 연계용 변압기의 결선방식 및 철심구조에 따른 순환전류와 포화특성에 관한 연구)

  • Tae, Dong-Hyun;Lee, Hu-Dong;Kim, Ji-Myung;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.39-48
    • /
    • 2020
  • Since the fire accident of ESS (energy storage system) occurred at Gochang KEPCO Power Testing Center in August 2017, 29 fire cases with significant property losses have occurred in Korea. Although the cause of fire accidents have not been identified precisely, it should be considered battery and PCS (power conditioning system) as well as unbalance issues in the distribution system. In particular, circulating currents in a neutral line of a grid-connected transformer, which can affect a magnetized current, may have a negative effect on the ESS with unintentional core saturation and surge voltages at the secondary side of the transformer. Therefore, this paper proposes the modeling of the distribution system, which was composed of a substation, grid-connected transformer, and customer loads using PSCAD/EMTDC S/W, to analyze the phenomena of circulating current and surge voltages of the transformer with unbalanced currents in the distribution system. This paper presents a countermeasure for a circulating current with the installation of NGR (neutral grounding resistor) in grid-connected transformer. From the simulation results, it is clear that exceeding the circulating current and surge voltage at the secondary side of the transformer can be one of the causes of fire accidents.

Comparison of Characteristics on the Flux-Lock and the Transformer Type SFCLs with Three Superconducting Units (3개의 초전도 소자를 갖는 자속구속형 SFCL과 변압기형 SFCL의 특성 비교)

  • Lee, Ju-Hyoung;Choi, Hyo-Sang
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.1
    • /
    • pp.79-84
    • /
    • 2009
  • In order to increase the capacity of the superconducting fault current limiter(SFCL), the current and voltage grades of the SFCL must be increased. As a method for the increase of the current and voltage grades of the SFCL, we compared the various characteristics between the flux-lock type SFCL "With three superconducting units connected in series and the transformer type SFCL using the transformer with three secondary circuits. One of three superconducting units had not quenched in the flux-lock type SFCL. Therefore, the unbalanced power burden happened because of the voltage difference generated by unbalanced quenching between the superconducting units. In the meantime, the three superconducting units were all quenched in the transformer type SFCL using the transformer, and the voltage difference generated between the superconducting units was decreased. Therefore, the difference of critical characteristics was complemented by distribution of fault current in accordance with the turn's ratio between primary and secondary windings. The unbalanced power burden of the superconducting units was reduced due to flux-share between the superconducting units in the transformer. In conclusion, the capacity increment of the SFCL using a transformer was easier due to equal distribution of voltages generated by simultaneous quench of the superconducting units. We think that the characteristics is improved more because of the decrease of saturation in the iron core if the secondary winding is increased in the SFCL using the transformer.

Torque Density Improvement of Five-Phase PMSM Drive for Electric Vehicles Applications

  • Zhao, Pinzhi;Yang, Guijie
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.401-407
    • /
    • 2011
  • In order to enhance torque density of five-phase permanent magnetic synchronous motor with third harmonic injection for electric vehicles (EVs) applications, optimum seeking method for injection ratio of third harmonic was proposed adopting theoretical derivation and finite element analysis method, under the constraint of same amplitude for current and air-gap flux. By five-dimension space vector decomposition, the mathematic model in two orthogonal space plane, $d_1-q_1$ and $d_3-q_3$, was deduced. And the corresponding dual-plane vector control method was accomplished to independently control fundamental and third harmonic currents in each vector plane. A five-phase PMSM prototype with quasi-trapezoidal flux pattern and its fivephase voltage source inverter were designed. Also, the dual-plane vector control was digitized in a single XC3S1200E FPGA. Simulation and experimental results prove that using the proposed optimum seeking method, the torque density of five-phase PMSM is enhanced by 20%, without any increase of power converter capacity, machine size and iron core saturation.

Magnetic Properties of Fe-6.0 wt%Si Alloy Dust Cores Prepared with Phosphate-coated Powders (인산염 피막처리 분말을 사용한 Fe-6.0 wt%Si 합금 압분자심의 자기적 특성)

  • Jang, D.H.;Noh, T.H.;Kim, K.Y.;Choi, G.B.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.5
    • /
    • pp.270-275
    • /
    • 2005
  • Dust cores (compressed powder cores) of $Fe-6.0wt\%Si$ alloy with a size of $35\~180\;{\mu}m$ in diameter have been prepared by phosphate coatings and annealings at $600\~900^{\circ}C$ for 1 h in nitrogen atmosphere. Further the magnetic and mechanical properties of the powder cores were investigated. As a general trends, the compressive strength and core loss decreased with the increase in annealing temperature. When annealed at $800^{\circ}C$, the compressive strength was 15 kgf, the permeability and quality factor were 74 and 26, respectively. Moreover the core loss at 50 kHz and 0.1 T induction was $750\;mW/cm^3$, and the percent permeability under the static field of 50 Oe was estimated to be about 78. In addition, the cut-off frequency in the cure representing the frequency dependence of effective permeability was measured to be around 200 kHz. These properties of the $Fe-6.0wt\%Si$ alloy dust cores could be considered to be due to the good insulation effect of iron-phosphate coats, the decrease in magnetocrystalline anisotropy and saturation magnetostriction and the increase in electric resistivity.