• 제목/요약/키워드: Saturation Temperature

검색결과 935건 처리시간 0.032초

응축전열관 외부형상 변화에 따른 HFC134a의 열전달 실험 (The Experimental Study on the Heat Transfer of HFC134a for Condensation Tubes with Various Enhanced Surfaces)

  • 박찬형;이영수;정진희;강용태
    • 설비공학논문집
    • /
    • 제18권8호
    • /
    • pp.613-619
    • /
    • 2006
  • The objectives of this paper are to study the characteristics of heat transfer for enhanced tubes (19.05 mm) used in the condenser with high saturation temperatures and to provide a guideline for optimum design of a condenser using HFC134a. Three different enhanced tubes are tested at a high saturation temperature of $59.8^{\circ}C$ (16 bar); a low-fin and three turbo-C tubes.. The refrigerant, HFC134a is condensed on the outside of the tube while the cooling water flows inside the tube. The film Reynolds number varies from 130 to 330. The wall subcooling temperature ranges from $2.7^{\circ}C$ to $9.7^{\circ}C$. This study provides experimental heat transfer coefficients for condensation on the enhanced tubes. It is found that the turbo-C(2) tube provides the highest heat transfer coefficient.

초미세 발포 사출 시 핵 생성장치를 이용한 셀 크기의 변화 (Cell morphology of microcellular foaming injection molding products with pressure drop rate)

  • 김학빈;차성운
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.491-495
    • /
    • 2004
  • The industries use polymer materials for many purposes for they have many merits. The costs of these materials take up too great a proportion of the overall cost of products that use these materials as their major material. It is advantage for polymer industries to reduce these costs. The microcellular foaming process was developed in the early 1980s to solve this problem and proved to be quite successful. Microcellular foaming process uses inert gases such as $CO_2$, $N_2$. As these gases solve into polymer matrices, many properties are changed. The microcellular foaming process makes the glass transition temperature of polymers to low, and diminish the residual stress of polymer matrices. Besides, the microcellular foaming process has several merits, impact strength elevation, thermal insulation, noise insulation, and raw material saving etc. This characteristic of microcellular foaming process has influenced by cell morphology. The cell morphology means cell size and cell density. The cell morphology has influenced by many factors. The examples of factor are pressure drop rate, foaming temperature, foaming time, saturation pressure, saturation time etc. Among their factors, pressure drop rate is the most important factor for cell morphology in microcellular foaming injection molding process. This paper describes about the cell morphology change in accordance with the pressure drop rate of microcellular foaming injection molding process.

  • PDF

지표자료와 구름물리를 토대로 한 호우모형의 개선에 관한 연구 (A Study on the Improvement of Heavy Rainfall Model Based on the Ground Surface Data and Cloud Physics)

  • 김운중;이재형
    • 물과 미래
    • /
    • 제28권6호
    • /
    • pp.229-236
    • /
    • 1995
  • 강수의 물리과정에 입각한 호우모형이 전일권(1994)에 의하여 개발되었다. 본 논문에서 이를 수정하였다. 본는 연구 모형에서 구성한 주요 부분은 포화증기압, 구름두께, 운정기압에 관한 것이다. 기존 모형과 달리 본 연구 모형의 입력자료로써 위성에 의해 측정된 운정기온과 알베도를 사용하였다. 본 연구에서 기존의 포화증기압 방정식보다 현실에 가까운 방정식을 획득하였으며 기존 방정식의 단점을 해결하였다. 또한 운정기온과 운정기압 추정에 사용된 매개변수가 소거되었으며 계산시간도 단축되었다. 본 연구 모형을 전주지점의 호우사상에 적용하여 검증한 결과 모형의 출력인 총강우량과 강우 패턴이 실측치에 잘 부합되었다.

  • PDF

비정질 Fe-Co-Re-B(RE=Nd, Sm, Gd, Tb) 합금의 자기적 성질 (A Study on the Magnetic Properties of Amorphous Fe-Co-RE-B (RE=Nd, Sm, Gd, Tb) Alloys)

  • 김경섭;유성초;김창식;김종오
    • 한국자기학회지
    • /
    • 제1권2호
    • /
    • pp.55-59
    • /
    • 1991
  • 희토류-3d 천이원소인 비정질${[{(Fe_{80}CO_{20})}_{0.98}RE_{0.02}]}_{80}B_{20}(RE=Nd,\;Sm,\;Gd,\;Tb)$ 합금 리본시료에 대한 자기적 성질을 조사하기 위하여 시료진동형 자력계(vibrating sample magnetometor)를 이용하여 77 K부터 900 K까지의 온도 영역에서 포화자화 값을 온도의 함수로 측정 한후, Curie 온도 ($T_{c}$)와 Bloch 상수등을 추정하였다. 이들로 부터 spin wave stiffness 상수, 교환상호작용(exchange interaction)의 범위와 평균자승거리($$)등을 계산하였으며 각 희토류 원소에 대한 치환효과를 비교 분석하였다.

  • PDF

수평관내의 $CO_2$의 증발 열전달에 관한 연구 (Study on the Evaporation Heat transfer of $CO_2$ in a Horizontal tube)

  • 장승일;최선묵;김대희;오후규
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.240-241
    • /
    • 2005
  • The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator(test section). The test section was made of a horizontal stainless steel tube with the inner diameter of 4.57 mm, and length of 4 m. The experiments were conducted at mass flux of 200 to 700 kg/$m^2s$, saturation temperature of 0$^{circ}C$ to 20$^{circ}C$, and heat flux of 10 to 30 kW/$m^2$. The test results showed the evaporation heat transfer of $CO_2$ has great effect on more nucleate boiling than convective boiling. The evaporation heat transfer coefficients of $CO_2$ are highly dependent on the vapor quality, heat flux and saturation temperature. In comparison with test results and existing correlations, correlations failed to predict the evaporation heat transfer coefficient of $CO_2$, therefore, it is necessary to develop reliable and accurate predictions determining the evaporation heat transfer coefficient of $CO_2$ in a horizontal tube.

  • PDF

판각형 열교환기내의 R-134a 증발열전달 특성에 관한 실험적 연구 (Experimental Study on R-134a Evaporation Heat Transfer Characteristics in Plate and Shell Heat Exchanger)

  • 김수진;박재홍;서무교;김영수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.248-253
    • /
    • 2001
  • An experiment was carried out to investigate the characteristics of the evaporation heat transfer for refrigerant R-134a flowing in a plate and shell heat exchanger. The data are useful in designing more compact and effective evaporators for various refrigeration and air conditioning systems. Two vertical counterflow channels were formed in the exchanger. The R-134a flows up in one channel exchanging heat with the hot water flowing down in the other channel. The effects of the average heat flux, mass flux, saturation temperature and vapor quality were examined in detail. The present data show that the evaporation heat transfer coefficient increases with the vapor quality. A rise in the refrigerant mass flux causes an increase in the $h_r$ value. A rise in the average imposed heat flux causes an increase in the $h_r$, value at the low quality. Finally, at a higer refrigerant saturation temperature the $h_r$, value is found to be lower.

  • PDF

가스하이드레이트 형성 과정의 비저항 모니터링 (Electrical Resistivity Monitoring of Gas Hydrate Formation)

  • 이주용;이재형;이대성;이원석;김세준;허대기;김현태
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.186-187
    • /
    • 2008
  • Electrical resistivity in hydrate-bearing sediments is sensitive to porosity, gas hydrate saturation, gas content, pore fluid composition, and temperature, so electrical measurements such as well logs and electromagnetic surveys have been used to explore gas hydrate-bearing formation. The high pressure tomography cell is designed considering the effect of electrode configuration and electrical shielding on tomography measurements and the safety. The evolution of electrical conductivity during $CO_2$ hydrate formation and dissociation reflects the combined effects of concurrent changes that include ionization of dissolved $CO_2$, temperature-dependent ionic mobility, changes in the degree of saturation, ion exclusion, surface conduction, and porosity changes. Measurements during hydrate formation and dissociation require careful analysis to properly interpret signatures, in particular when out-of plane conductivity anomalies prevail.

  • PDF

Cu(Mg) alloy의 비저항에 영향을 미치는 인자에 대한 연구 (A study on the factors affecting Cu(Mg) alloy resistivity)

  • 조흥렬;조범석;이재갑;박원욱;이은구
    • 한국표면공학회지
    • /
    • 제32권6호
    • /
    • pp.695-702
    • /
    • 1999
  • We have explored the factors affecting the resistivity of Cu (Mg) alloy, which was prepared by sputtering. The results show that the resistivity is a function of Mg content, annealing temperature, annealing time, and Cu-alloy thickness. Addition of Mg to copper increases the resistivity through solute scattering. In addition, increasing Mg content promotes the interfacial reaction between Mg and SiO$_2$ to produce the free silicon and the generated free silicon dissolves into copper, resulting in a significant increase of resistivity. Furthermore, increasing oxidation temperature rapidly decreases the resistivity at the initial stage of oxidation and then continues to increase the resistivity to the saturation value with increasing oxidation time. The saturation value depends on the residual Mg content and the thickness of the alloy. TEM and AES analyses reveal that dense, uniform MgO grows to the limiting thickness of about $150\AA$. However, interfacial MgO does not show the limiting thickness, instead continues to grow until Mg is completely exhausted. From these facts, we proposed the maximum available Mg content needed to from the dense MgO on the surface and suppress the excessive interfacial reaction.

  • PDF

수평관내 이산화탄소의 증발 열전달과 압력강하 (Evaporation Heat Transfer and Pressure Drop of Carbon Dioxide In a Horizontal Tube)

  • 손창효
    • 한국수소및신에너지학회논문집
    • /
    • 제18권2호
    • /
    • pp.189-196
    • /
    • 2007
  • The evaporation heat transfer coefficient and pressure drop of $CO_2$(R-744) in a horizontal tube was investigated experimentally. The main components of the experimental apparatus are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and an evaporator(test section). The test section consists of a horizontal stainless steel tube of 4.57 mm inner diameter. The experiments were conducted at mass flux of $200{\sim}1000\;kg/m^2s$ saturation temperature of $0{\sim}20^{\circ}C$, and heat flux of $10{\sim}40\;kW/m^2$. The test results showed that the heat transfer coefficient of $CO_2$ has a greater effect on nucleate boiling more than convective boiling. Mass flux of $CO_2$ does not affect nucleate boiling too much. In comparison with test data and existing correlations, All of the existing correlations for the heat transfer coefficient underestimated the experimental data. However lung et al.'s correlation showed a good agreement with the experimental data. The evaporation pressure drop of $CO_2$ increases with increasing mass flux and decreasing saturation temperature. When comparison between the experimental pressure drop and existing correlations. Existing correlations failed to predict the evaporation pressure drop of $CO_2$.

$Fe_2O_3-CaO-SiO_2$계 결정화 유리의 제조 및 특성(II) (Characterization and Preparation of Glass-Ceramics in the System $Fe_2O_3-CaO-SiO_2$)

  • 이용근;최세영
    • 한국세라믹학회지
    • /
    • 제33권1호
    • /
    • pp.119-125
    • /
    • 1996
  • Magnetic properties through controlled nucleation and crystallization wer studied for ferrimagnetic 40Fe2O3-20CaO-40SiO2 glass useful as thermoseeds for hyperthermia of tumor therapy. The maximum nucleation and crystal growth temperature are $700^{\circ}C$ and 100$0^{\circ}C$ respectively. The glass showed the maximum saturation magnetization of 168.4 emu/cm3 when nucleated $700^{\circ}C$ for 60 min and crystal grown at 100$0^{\circ}C$ for 4hrs. The maximum coercive force was 390 Oe when uncleated $700^{\circ}C$ for 60 min and crystal grown at 975$^{\circ}C$ for 2 hrs. The variation of the saturation magnetization could be well quantitatively interpreted in terms of the volume fraction of the magnetite whereas that of the coercive forces could be explained only qual.itatively in terms of the particle size of the magnetite. Hysteresis losses showed the maximum value of 0.18W/cm3 when heat treated at 100$0^{\circ}C$ for 4 hrs pre-necleated at $700^{\circ}C$ for 60 min and temperature increase of 7K under AC magnetic field of 10 kOe and 10kHz.

  • PDF