• Title/Summary/Keyword: Saturated temperature

Search Result 613, Processing Time 0.023 seconds

Foaming of Poly(butylene succinate) with Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 Poly(butylene succinate) 발포)

  • Son, Jae-Myoung;Song, Kwon-Bin;Kang, Byong-Wook;Lee, Kwang-Hee
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.34-40
    • /
    • 2012
  • The foaming of poly(butylene succinate) (PBS) using supercritical $CO_2(scCO_2)$ was studied. In order to improve the melt strength, PBS was modified using the reactive compounding technique. Rapid decompression of $scCO_2$-saturated PBS at a temperature above the depressed $T_m$ yielded expanded microcellular foams. The resulting foam structure could be controlled by manipulating process conditions. Experiments varying the foaming temperature while holding other variables constant showed that higher temperatures produced larger cells and reduced cell densities. Higher saturated pressures led to higher nucleation densities and smaller cell sizes. Decreasing the rate of depressurization permitted a longer period of cell growth and therefore larger cells were obtained.

Moisture Sorption and Desorption Characteristics of Tobacco Types. (담배종류별 흡습 및 방습 특성)

  • 김용옥;정한주;공판임;장기철
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.26 no.1
    • /
    • pp.43-49
    • /
    • 2004
  • This study was carried out to investigate moisture sorption and desorption characteristics followed by tobacco type. Experiments were performed at various temperature(5, 15, 25, 40 $^{\circ}C$) and relative humidity range (11~84 %) controlled by saturated salt solution. Regression equation was obtained to predict equilibrium moisture according to various relative humidity, temperature and tobacco types. The obtained regression equation showed high $R^2$(above 0.95) and predicted accurate equilibrium moisture. Equilibrium moisture contents declines in the following order when a relative humidity is 50 % or above: expanded stem, flue-cured, expanded tobacco, reconstituted tobacco, USA flue-cured, orient, burley. To maintain 13 % moisture of each tobacco type in the range of 5~40 $^{\circ}C$ it is recommendable to control relative humidity 49~56 % for expanded stem, 50~57 % for flue-cured, 54~61 % for USA flue-cured, 56~60 % for reconstituted tobacco, 57~62 % for expanded tobacco, 58~64 % for orient and 58~65 % for burley, respectively. It means that the relative humidity of each tobacco type should be differently controlled to maintain the same moisture under the same temperature. In the range of 5~25 $^{\circ}C$, the lower temperature showed the higher equilibrium moisture content.

Corrosion behavior induced by LiCl-KCl in type 304 and 316 stainless steel and copper at low temperature

  • Sim, Jee-Hyung;Kim, Yong-Soo;Cho, Il-Je
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.769-775
    • /
    • 2017
  • The corrosion behavior of stainless steel (304 and 316 type) and copper induced by LiCl-KCl at low temperatures in the presence of sufficient oxygen and moisture was investigated through a series of experiments (at $30^{\circ}C$, $40^{\circ}C$, $60^{\circ}C$, and $80^{\circ}C$ for 24 hours, 48 hours, 72 hours, and 96 hours). The specimens not coated on one side with an aqueous solution saturated with LiCl-KCl experienced no corrosion at any temperature, not even when the test duration exceeded 96 hours. Stainless steel exposed to LiCl-KCl experienced almost no corrosion below $40^{\circ}C$, but pitting corrosion was observed at temperatures above $60^{\circ}C$. As the duration of the experiment was increased, the rate of corrosion accelerated in proportion to the temperature. The 316 type stainless steel exhibited better corrosion resistance than did the 304 type. In the case of copper, the rate of corrosion accelerated in proportion to the duration and temperature but, unlike the case of stainless steel, the corrosion was more general. As a result, the extent of copper corrosion was about three times that of stainless steel.

Estimate of package crack reliabilities on the various parameters using taguchi's method (다꾸찌방법을 사용한 여러변수들이 패키지균열에 미치는 신뢰도 평가)

  • Kwon, Yong-Su;Park, Sang-Sun;Park, Jae-Wan;Chai, Young-Suck;Choi, Sung-Ryul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.951-960
    • /
    • 1997
  • Package crack caused by the soldering process in the surface mounting plastic package is evaluated by applying the maximum energy release rate criterion. It could be shown that the crack propagation from the lower edge of the ie pad is easily occurred at the maximum temperature during the soldering process, where the pressure acting on the crack surface is assumed by the saturated vapor pressure at maximum temperature. The package crack formation depends on various parameters such as chip size, relative thickness, material properties, the moisture content and soldering temperature etc. The quantitative measure of the effects of the parameters could be easily obtained by using the taguchi's method which requires only a few kinds of combinations with such parameters. From the results, it could be obtained that the more significant parameters to effect the package reliability are the orders of Young's modulus, die pad size, down set, chip thickness and maximum soldering temperature.

Prediction Model for Saturated Hydraulic Conductivity of Bentonite Buffer Materials for an Engineered-Barrier System in a High-Level Radioactive Waste Repository

  • Gi-Jun Lee;Seok Yoon;Bong-Ju Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.2
    • /
    • pp.225-234
    • /
    • 2023
  • In the design of HLW repositories, it is important to confirm the performance and safety of buffer materials at high temperatures. Most existing models for predicting hydraulic conductivity of bentonite buffer materials have been derived using the results of tests conducted below 100℃. However, they cannot be applied to temperatures above 100℃. This study suggests a prediction model for the hydraulic conductivity of bentonite buffer materials, valid at temperatures between 100℃ and 125℃, based on different test results and values reported in literature. Among several factors, dry density and temperature were the most relevant to hydraulic conductivity and were used as important independent variables for the prediction model. The effect of temperature, which positively correlates with hydraulic conductivity, was greater than that of dry density, which negatively correlates with hydraulic conductivity. Finally, to enhance the prediction accuracy, a new parameter reflecting the effect of dry density and temperature was proposed and included in the final prediction model. Compared to the existing model, the predicted result of the final suggested model was closer to the measured values.

Failure simulation of nuclear pressure vessel under LBLOCA scenarios

  • Eui-Kyun Park;Jun-Won Park;Yun-Jae Kim;Kukhee Lim;Eung-Soo Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2859-2874
    • /
    • 2024
  • This paper presents the finite element deformation and failure simulation of a typical Korean high-power reactor vessel under a severe accident characterized by large break loss of coolant (LBLOCA) with in-vessel retention of molten corium through external reactor vessel cooling (IVR-ERVC) conditions. Temperature distributions calculated using Modular Accident Analysis Program Version 5 (MAAP5) as thermal boundary conditions were used, and ABAQUS thermal and structural analyses were performed. After full ablation, the temperature of the inner surface in the thinnest section remained high (920 ℃), but the stress remained relatively low (less than 6 MPa). At the outer surface, the stress was as high as 250 MPa; however, the resulting plastic strain was small owing to the low temperature of 200 ℃. Variations in stress, inelastic strain, and temperature with time in the thinnest section suggest that the plastic and creep strains are saturated owing to stress relaxation, resulting in low cumulative damage. Thus, the lower head of the vessel can maintain its structural integrity under LBLOCA with IVR-ERVC conditions. The sensitivity analysis of internal pressure indicates the occurrence of failure in the thinnest section at an internal pressure >9.6 MPa via local necking followed by failure due to high stresses.

Electrical Conduction Mechanism of AIN Insulator thin Film Fabricated by Reactive Sputtering Method for the Application of MIS Device (반응성 스퍼터링으로 제조한 MIS 소자용 AIN 절연박막의 전기전도 메커니즘)

  • Park, Jung-Cheul;Kwon, Jung-Youl;Lee, Heon-Yong;Chu, Soon-Nam
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.4
    • /
    • pp.751-755
    • /
    • 2007
  • We have studied the variable conditions of reactive sputtering to prepare AM thin film. The leakage current showed below $10^{-9}A/cm^2$ at the deposition temperature of $250^{\circ}C\;and\;300^{\circ}C$ in the field of 0.1 MV/cm, and it was gradually increased and to be saturated in 0.2 MV/cm. The C-V characteristics of the above mentioned deposition temperature conditions showed a deep depletion phenomenon at inversion region. The C-V characteristics showed similarly under the DC power conditions of 100 and 150 W but were degraded at 200W. When the DC power was 100, 200, and 300 W the dielectric breakdown phenomenon was shown in 2.8, 3.2 and 5.2 MV/cm, respectively. It was found that AIN film was dominated by Poole-Frenkel conduction mechanism.

Ku-Band Power Amplifier MMIC Chipset with On-Chip Active Gate Bias Circuit

  • Noh, Youn-Sub;Chang, Dong-Pil;Yom, In-Bok
    • ETRI Journal
    • /
    • v.31 no.3
    • /
    • pp.247-253
    • /
    • 2009
  • We propose a Ku-band driver and high-power amplifier monolithic microwave integrated circuits (MMICs) employing a compensating gate bias circuit using a commercial 0.5 ${\mu}m$ GaAs pHEMT technology. The integrated gate bias circuit provides compensation for the threshold voltage and temperature variations as well as independence of the supply voltage variations. A fabricated two-stage Ku-band driver amplifier MMIC exhibits a typical output power of 30.5 dBm and power-added efficiency (PAE) of 37% over a 13.5 GHz to 15.0 GHz frequency band, while a fabricated three-stage Ku-band high-power amplifier MMIC exhibits a maximum saturated output power of 39.25 dBm (8.4 W) and PAE of 22.7% at 14.5 GHz.

  • PDF

Polarizations and Electrical Properties of PMS-PZT Ferroelectric Materials (PMS-PZT계 강유전 재료의 분극과 전기적 특성)

  • Kim, J.R.;Kim, H.S.;Lee, H.Y.;Oh, Y.W.
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.12
    • /
    • pp.1314-1319
    • /
    • 2004
  • The rosen types of piezo-transformers were prepared and electrical properties were investigated in order to establish the optimum parameters in the process of polarization for ferroelectric materials. Polarization was readily originated with increasing the external energy such as an applied voltage, time, and temperature so that the planar coupling factor and voltage gain were saturated under the conditions of over 14$0^{\circ}C$, applied voltage and time of 4 kV/mm and 3 minutes respectively. The empirical equation for domain rotation probability, which was in proportion to square of an applied voltage and temperature and square root of time, as functions of the above parameters was defined.

THE PERFORMANCE OF CLAY BARRIERS IN REPOSITORIES FOR HIGH-LEVEL RADIOACTIVE WASTE

  • Pusch, Roland
    • Nuclear Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.483-488
    • /
    • 2006
  • Highly radioactive waste is placed in metal canisters embedded in dense clay termed buffer. The radioactive decay is associated with heat production, which causes degradation of the buffer and thereby time-dependent loss of its waste-isolating potential. The buffer is prepared by compacting air-dry smectite clay powder and is initially not fully water saturated. The evolution of the buffer starts with slow wetting by uptake of water from the surrounding rock followed by a long period of exposure to heat, pressure from the rock and chemical reactants. It can be described by conceptual and theoretical models describing processes related to temperature (T), hydraulic (H), mechanical (M) and chemical performance (C). For temperatures below 90 C more than 75 % of the smectite will be preserved for 100 000 years but cementation may reduce the excellent performance of the buffer to a yet not known extention.