• Title/Summary/Keyword: Saturated soils

Search Result 260, Processing Time 0.034 seconds

Calculation of Thermal Conductivity and Heat Capacity from Physical Data for Some Representative Soils of Korea

  • Aydin, Mehmet;Jung, Yeong-Sang;Lee, Hyun-Il;Kim, Kyung-Dae;Yang, Jae-E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • The thermal properties including volumetric heat capacity, thermal conductivity, thermal diffusivity, and diurnal and annual damping depths of 10 representative soil series of Korea were calculated using some measurable soil parameters based on the Taxonomical Classification of Korean Soils. The heat capacity of soils demonstrated a linear function of water content and ranged from 0.2 to $0.8cal\;cm^{-3}^{\circ}C^{-1}$ for dry and saturated medium-textured soil, respectively. A small increase in water content of the dry soils caused a sharp increase in thermal conductivity. Upon further increases in water content, the conductivity increased ever more gradually and reached to a maximum value at saturation. The transition from low to high thermal conductivity occurred at low water content in the soils with coarse texture, and at high water content in the other textures. Thermal conductivity ranged between $0.37{\times}10^{-3}cal\;cm^{-1}s^{-1}^{\circ}C^{-1}$ for dry (medium-textured) soil and $4.01{\times}10^{-3}cal\;cm^{-1}s^{-1}^{\circ}C^{-1}$ for saturated (medium/coarse-textured) soil. The thermal diffusivity initially increased rapidly with small increases in water content of the soils, and then decreased upon further increases in the soil-water content. Even in an extreme soil with the highest diffusivity value ($1.1{\times}10^{-2}cm^2s^{-1}$), the daily temperature variation did not penetrate below 70 cm soil depth and the yearly variation not below 13.4 m as four times of damping depths.

Available Phosphours Phosphorus and Electrical Conductivity of the Saturated Extracts of Soils from the Plastic Film Houses (포화침출액법에 의한 시설하우스 토양의 유효인산과 전기전도도)

  • Jung, Yeong-Sang;Cho, Su-Hyun;Yang, Jae E.;Kim, Jeong-Je;Um, Hyung-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.1
    • /
    • pp.1-7
    • /
    • 2000
  • Management of phosphorus availability in the plastic film house soils in Korea merits attention because salts have been accumulated for last decades due to the heavy application of fertilizers and intensive cropping practices. In an attempt to characterize the P availability, available phosphorus contents and electrical conductivity of the saturated extracts ($EC_e$) were measured for soils collected from the 169 plastic film houses in Kangwon-do. Soil phosphorus contents were analyzed by methods of Lancaster, Bray No. 1, Olsen, Truog, water extractable and saturation extracts. Phosphorus concentrations in the saturated extracts of the plastic film house soils ranged from 0.02 to $34mg\;L^{-1}$, with the average of $8mg\;L^{-1}$. The available $P_2O_5$ of the soils ranged from 136 to $3,689mg\;Kg^{-1}$, with the average of $1,261mg\;Kg^{-1}$. The water soluble $P_2O_5$ ranged from 2 to $118mg\;L^{-1}$, with the average of $39mg\;L^{-1}$. A significant correlation existed between saturation extract P (Y) and available $P_2O_5$ (X) [Y = -5.075 + 0.018X, $r=0.662^{***}$] indicating $1.0mg\;P\;L^{-1}$ of in the saturated extract was equivalent to $337mg\;Kg^{-1}$ of the available $P_2O_5$ by Lancaster method. Electrical conductivity of the saturated pastes ($EC_e$) was highly significantly correlated with EC (1:5), yielding the slope of 12.2 for the coarse textured plastic film house soils. Results of higher concentrations of available P in soil solution and dilution factor of 12.2 for $EC_e$ demonstrate that a special care must be taken in terms of fertilizer management and data interpretation for soils under this specific condition.

  • PDF

Generalized Schmertmann Equation for settlement estimation of shallow footings in saturated and unsaturated sands

  • Mohamed, Fathi M.O.;Vanapalli, Sai K.;Saatcioglu, Murat
    • Geomechanics and Engineering
    • /
    • v.5 no.4
    • /
    • pp.343-362
    • /
    • 2013
  • Simple relationships are proposed in this paper by modifying the Schmertmann's equation for settlement estimations of footings (i.e., $B/L{\approx}1$) carrying vertical loads in saturated and unsaturated sandy soils. The modified method is developed using model plate load tests (PLTs) and cone penetration tests (CPTs) results conducted in saturated and unsaturated sand in a controlled laboratory environment. Seven in-situ large-scale footings tested under both saturated and unsaturated conditions in sands were used to validate the proposed technique. The results of the study are encouraging as they provide reliable estimates of the settlement of shallow footings in both saturated and unsaturated sands using the conventional CPT results.

Effect on Matric Suction in Soils due to Hysteretic Soil Water Characteristic Curves (함수특성곡선 이력현상이 지반 내 모관흡수력에 미치는 영향)

  • Kim, Jae-Hong;Hwang, Woong-Ki;Song, Young-Suk;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.91-100
    • /
    • 2012
  • Soil-water characteristic curves (SWCCs), which represent a physical property in partially saturated soils, show the relation between volumetric water content and matric suction. The SWCCs exhibit hysteresis during wetting and drying, however experimental expressions used to describe SWCCs have generally ignored the hysteresis. In addition, the shape of SWCC may depend on the void ratio which is changed by soil skeleton deformations or hysteretic behavior under various loading conditions. Hence, it is necessary to understand, both empirically and analytically, the relationship between soil skeleton deformations and the SWCCs of various soils. The typical SWCCs experimentally have drying, wetting, and the second drying curve. The measurement of a complete set of hysteretic curves is severely time-consuming and difficult works, then the first drying curve of SWCC is generally determined to estimate the hydraulic conductivity and shear strength function of partially saturated soils. This paper presents the hydraulic-mechanical behavior of partially saturated soils (weathered soil and silty soil) for volume changes and hysteresis in SWCCs regarding the difference between the first drying and wetting curve.

Determination of soil water characteristic curve and permeability equation of unsaturated soils using modified triaxial apparatus (변형된 삼축시험장치를 이용한 불포화토의 함수특성곡선과 투수계수방정식의 결정)

  • Kim, Suk-Nam;Park, Chi-Won;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.362-369
    • /
    • 2005
  • Studying unsaturated soil mechanics, determination of soil water characteristic curve and permeability equation is an essential factor but it is not easy. In this research a new testing apparatus was developed to determine soil water characteristic curve and permeability equation. The testing to get saturated permeability coefficients and soil water characteristic curves for two soils was performed by using the developed testing apparatus. First, a saturated permeability testing was performed and then the testing to get soil water characteristic curve of a drying process was performed. Next, the testing to get soil water characteristic curve of a wetting process was performed. Testing results showed hysteresis phenomena between soil water characteristic curve of a drying process and soil water characteristic curve of a wetting process. The permeability equations were determined by a theoretical method where a saturated permeability coefficient and a soil water characteristic curve were used.

  • PDF

Assessment of the Models for Predicting the Thermal Conductivity of Saturated Kaolinite (포화된 카올리나이트를 이용한 열전도계수 예측모델의 신뢰성 검토)

  • Lee, Jangguen;Kim, Hakseung;Kang, Jaemo;Kim, Youngseok;Bae, Gyujin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.3
    • /
    • pp.21-27
    • /
    • 2012
  • Estimating the thermal conductivity of clayey soils is important for enhancing the performance of geoengineering structures in cold regions and clay barriers for nuclear waste repositories, but specimen disturbance, saturation, and heat boundary conditions of the test apparatus hinder reliable measurements of the thermal conductivity of saturated clayey soils. This paper presents the results of an experimental study carried out using modified consolidation tests with the needle probe method to measure thermal conductivity. Experimental consolidation tests with saturated kaolinite were performed to investigate the effect of effective stress and dry density on thermal conductivity for saturated kaolinite. In addition, thermal conductivity of soil particles were thoroughly investigated and experimental results were used to evaluate the accuracy of the models to predict thermal conductivity.

A Study of Stability Analysis on Unsaturated Weathered Slopes Based on Rainfall-induced Wetting (강우시 습윤에 의한 불포화 풍화토의 사면 안정 해석 연구)

  • 김재홍;박성완;정상섭;유지형
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.123-136
    • /
    • 2002
  • The infiltration of prolonged rainfall causes shallow slope failures on surficial slopes. Experiments performed on soil-water characteristic curves in weathered soils of three different types(SW, SP, SM) were used to construct a general equation for the soil-water characteristic curve. Based on this, the saturated depth by Green & Ampt model was compared with the results of numerical analyses and the range of application of Green & Ampt model was evaluated. It was found that the saturated depth occurred by infiltration on the surface of slopes has an inf1uence on the surficial stability of slopes md, the stability analysis of unsaturated soils calculated by using the soil-water characteristic curve of weathered soils was found to be a proper analysis for shallow slope failures due to rainfall.

Effect of grain size on the shear strength of unsaturated silty soils

  • Onturk, Kurban;Bol, Ertan;Ozocak, Askin;Edil, Tuncer B.
    • Geomechanics and Engineering
    • /
    • v.23 no.4
    • /
    • pp.301-311
    • /
    • 2020
  • In this study, shear strength behavior of fine-grained soils was investigated under unsaturated conditions. The samples in the unsaturated state were subjected to a net normal stress (σ-ua) of 40 kPa and different matric suctions (ua-uw) of 50, 100 and 150 kPa. The matric suction values applied in the triaxial tests were selected according to the bubbling pressures determined from the SWC curves. The study was carried out on prepared re-constituted cylindrical samples by uniaxial consolidation of soil slurries. First, consolidated drained (CD) triaxial compression tests were performed on the saturated samples and the cohesion and angle of internal friction were determined. After that, drained triaxial compression tests under matric suctions were performed on the unsaturated samples. In order to obtain unsaturated test results, cohesion and internal friction angle values of saturated samples were used. The nonlinear surface representing the shear strength surface was approximated consisting of two planes (double planar surface). The reason for the nonlinear behavior of some soils is that the amount of sand content contained in it is relatively high and the bubbling pressure/permanent water content value is relatively low.

Influencing factors on electrical conductivity of compacted kaolin clay

  • Lee, J.K.;Shang, J.Q.
    • Geomechanics and Engineering
    • /
    • v.3 no.2
    • /
    • pp.131-151
    • /
    • 2011
  • The electrical conductivity of a soil-water system is related to its engineering properties. By measuring the soil electrical conductivity, one may obtain quantitative, semi-quantitative, or qualitative information to estimate the in-situ soil behavior for site characterization. This paper presents the results of electrical conductivity measured on compacted kaolin clay samples using a circular two-electrode cell in conjunction with a specially designed compaction apparatus, which has the advantage of reducing errors due to sample handling and increasing measurement accuracy. The experimental results are analyzed to observe the effects of various parameters on soil electrical conductivity, i.e. porosity, unit weight, water content and pore water salinity. The performance of existing analytical models for predicting the electrical conductivity of saturated and unsaturated soils is evaluated by calculating empirical constants in these models. It is found that the Rhoades model gives the best fit for the kaolin clay investigated. Two general relationships between the formation factor and soil porosity are established based on the experimental data reported in the literature and measured from this study for saturated soils, which may provide insight for understanding electrical conduction characteristics of soils over a wide range of porosity.

Assessment of Electrical Conductivity of Saturated Soil Paste from 1:5 Soil-Water Extracts for Reclaimed Tideland Soils in South-Western Coastal Area of Korea

  • Park, Hyun-Jin;Yang, Hye In;Park, Se-In;Seo, Bo-Seong;Lee, Dong-Hwan;Kim, Han-Yong;Choi, Woo-Jung
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.2
    • /
    • pp.69-75
    • /
    • 2019
  • BACKGROUND: Measurement of electrical conductivity of saturated soil paste ($EC_e$) for assessment of soil salinity is time-consuming, and thus conversion of EC of 1:5 soil-water extract ($EC_{1:5}$) to $EC_e$ using a dilution factor may be of help to monitor salinity of huge number of soil samples. This study was conducted to evaluate the dilution factor for reclaimed tideland (RTL) soils of South Korea. METHODS AND RESULTS: Soil samples (n=40) were collected from four RTLs, and analyzed for $EC_{1:5}$, $EC_e$, and cation compositions of 1:5 soil-water extract. The dilution factor (8.70) was estimated by regression analysis between $EC_{1:5}$ and $EC_e$, and the obtained dilution factor was validated by applying to an independent data set (n=96) of $EC_{1:5}$ and $EC_e$. The $EC_e$ measured and predicted was strongly correlated ($r^2=0.74$, P<0.001), but $EC_e$ was overestimated by 16% particularly for the soils with high clay content and low sodium adsorption ratio (SAR). CONCLUSION: This study suggests that using the dilution factor to convert $EC_{1:5}$ to $EC_e$ is feasible method to monitor changes in the soil salinity of the study RTL. However, overestimation of $EC_e$ should be cautioned for the soils with high clay content and low SAR.