DOI QR코드

DOI QR Code

Effect on Matric Suction in Soils due to Hysteretic Soil Water Characteristic Curves

함수특성곡선 이력현상이 지반 내 모관흡수력에 미치는 영향

  • Kim, Jae-Hong (Dept. of Civil Engineering, Chonbuk National Univ.) ;
  • Hwang, Woong-Ki (Dept. of Civil and Environmental Engineering, Korea Maritime Univ.) ;
  • Song, Young-Suk (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Tae-Hyung (Dept. of Civil Engineering, Korea Maritime Univ.)
  • 김재홍 (전북대학교 토목공학과) ;
  • 황웅기 (한국해양대학교 토목환경공학과) ;
  • 송영석 (한국지질자원연구원 지구환경연구본부) ;
  • 김태형 (한국해양대학교 건설공학과)
  • Received : 2012.03.08
  • Accepted : 2012.04.14
  • Published : 2012.04.30

Abstract

Soil-water characteristic curves (SWCCs), which represent a physical property in partially saturated soils, show the relation between volumetric water content and matric suction. The SWCCs exhibit hysteresis during wetting and drying, however experimental expressions used to describe SWCCs have generally ignored the hysteresis. In addition, the shape of SWCC may depend on the void ratio which is changed by soil skeleton deformations or hysteretic behavior under various loading conditions. Hence, it is necessary to understand, both empirically and analytically, the relationship between soil skeleton deformations and the SWCCs of various soils. The typical SWCCs experimentally have drying, wetting, and the second drying curve. The measurement of a complete set of hysteretic curves is severely time-consuming and difficult works, then the first drying curve of SWCC is generally determined to estimate the hydraulic conductivity and shear strength function of partially saturated soils. This paper presents the hydraulic-mechanical behavior of partially saturated soils (weathered soil and silty soil) for volume changes and hysteresis in SWCCs regarding the difference between the first drying and wetting curve.

부분포화토의 물리적 특징 중 하나인 함수특성곡선(soil-water characteristic curve)은 모관흡수력과 체적함수비의 관계를 나타낸다. 함수특성곡선은 지반의 습윤과정과 건조과정의 이력현상을 보여줄 수 있으나, 일반적으로 함수특성 곡선을 표현하는 방법은 이러한 이력현상을 무시한다. 또한 함수특성곡선의 고유한 형태는 흙의 간극비와 토립자들의 변형을 유발할 수 있는 외부의 여러 가지 하중들에 의해 언제든지 변화될 수 있다. 그러므로 여러 흙들이 가지고 있는 함수특성곡선과 토립자들 변형 사이의 관계에 대해서 실험적인 측면과 해석적인 측면의 차이점에 대해 이해가 필요하다. 실험적으로 1차 건조과정, 습윤과정 그리고 2차 건조과정으로 그려지는 전형적인 함수특성곡선들이 얻어진다. 이러한 이력현상을 갖는 함수특성곡선에서 습윤과정의 실험은 어려운 시험방법과 많은 시간소요가 필요하기 때문에 일반적으로 첫 번째 건조과정의 실험 결과를 불포화 투수계수와 전단강도 함수를 예측하기 위한 부분포화토의 물리적 특성으로 결정한다. 본 연구는 화강풍화토와 실트질 흙을 대상으로 유한요소해석 프로그램을 이용하여 부분포화토의 중요한 물리적 특성을 갖는 함수특성곡선의 1차 건조과정과 습윤과정 차이인 흙의 체적 변형과 이력현상에 대한 수리학적-역학적 흙의 거동특성을 비교 검토하였다.

Keywords

References

  1. 김재홍, 김유성 (2011), 부분포화토의 침투와 흙의 거동에 따른 유효응력 계수 분석, 한국지반공학회 논문집, 제27권, 12호, pp. 117-126. https://doi.org/10.7843/kgs.2011.27.12.117
  2. Borja, R.I. (2004), "Cam-Clay Plasticity. Part V: A mathematical framework for three-phase deformation and strain localization analyses of partially saturated porous media," Computer Methods in Applied Mechanics and Engineering, Vol.193, pp.5301-5338. https://doi.org/10.1016/j.cma.2003.12.067
  3. Coussy, O. (2004). Poromechanics, John Wiley and Sons, New York, pp.45-51, 157-168.
  4. de Boer, R. (2005). Trends in Continuum Mechanics of Porous Media: Theory and Applications of Transport in Porous Media, Springer.
  5. Ebel, B.A., Loague, K., Borja, R.I. (2010), "The impacts of hysteresis on variably saturated hydrologic response and slope failure," Environmental Earth Sciences, Vol.61, No.6 pp.1215- 1225. https://doi.org/10.1007/s12665-009-0445-2
  6. Guan, G.S., Rahardjo, H. and Leong, E.C. (2010), "Shear Strength Equations for Unsaturated Soil under Drying and Wetting," Journal of Geotechnical and Geoenvironmental Engineering, Vol.136, No.4, pp.594-606. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000261
  7. Hughes, T.J.R. (1987). The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Prentice-Hall, Dover, New Jersey.
  8. Khalili, N., Habte, M.A. and Zargarbashi, S. (2008), "A fully coupled flow deformation model for cyclic analysis of unsaturated soils including hydraulic and mechanical hysteresis," Computers and Geotechnics, Vol.35, pp.872-889. https://doi.org/10.1016/j.compgeo.2008.08.003
  9. Kim, J. (2010), "Plasticity modeling and coupled finite element analysis for partially-saturated soils," Ph.D. Thesis, University of Colorado at Boulder, US.
  10. Kumar, S. and Malik, R.S. (1990), "Verification of quick capillary rise approach for determining pore geometrical characteristics in soils of varying texture," Soil Science, Vol.150, No.6, pp.883-888. https://doi.org/10.1097/00010694-199012000-00008
  11. Laloui, L., Klubertanz, G. and and Vulliet, L. (2003), "Solidliquid- air coupling in multiphase porous media," International Journal for Numerical and Analytical Methods in Geomechanics, Vol.27, No.3, pp.183-206. https://doi.org/10.1002/nag.269
  12. Laroussi, C.H. and Debacker, L.W. (1979), "Relations between geometrical properties of glass bead media and their main $\Psi{\Theta}$ hysteresis loops," Soil Science Society of America Journal, Vol. 43, pp.646-650. https://doi.org/10.2136/sssaj1979.03615995004300040004x
  13. Letey, J., Osborn, J. and Pelishek, R.E. (1962), "Measurement of liquid-solid contact angles in soil and sand," Soil Science, Vol.93, pp.149-153. https://doi.org/10.1097/00010694-196203000-00001
  14. Lu, N., Godt, J.W. and Wu, D.T. (2010), "A closed-form equation for effective stress in unsaturated soil," Water Resources Research, Vol.46: W05515. https://doi.org/10.1029/2009WR008646
  15. Lu, N. and Likos, W. (2006), "Suction stress characteristic curve for unsaturated soil," Journal of Geotechnical and Geoenvironmental Engineering, Vol.132, No.2, pp.131-142. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(131)
  16. Ma, K.C., Tan, Y.C., and Chen, C.H. (2011), "The influence of water retention curve hysteresis on the stability of unsaturated soil slopes," Hydrologycal Processes, online.
  17. Miller, G.A., Khoury, C.N., Muraleetharan, K.K., Liu, C and Kibbey, T.C.G. (2008), "Effects of soil skeleton deformations on hysteretic soil water characteristic curves," Water Resources Research, Vol.44, W00C06. https://doi.org/10.1029/2007WR006492
  18. Mualem, Y. (1976), "A new model for predicting the hydraulic conductivity of unsaturated porous media," Water Resource Research, Vol.12, pp.513-522. https://doi.org/10.1029/WR012i003p00513
  19. Ng, C.W.W. and Pang, Y.W. (2000), "Influence of Stress State on Soil-Water Characteristics and Slope Stability," Journal of Geotechnical and Geoenvironmental Engineering, Vol.126, No.2, pp. 157-166. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:2(157)
  20. Nuth, M. and Laloui, L. (2008), "Advances in modelling hysteretic water retention curve in deformable soils," Computers and Geotechnics, Vol.35, pp.835-844. https://doi.org/10.1016/j.compgeo.2008.08.001
  21. Pham, H.Q., Fredlund, D.G. and Barbour, S.L. (2003), "A practical hysteresis model for the soil-water characteristic curve for soils with negligible volume change," Geotechnique, Vol.53, No.2, pp. 293-298. https://doi.org/10.1680/geot.2003.53.2.293
  22. van Genuchten, M. (1980), "Closed-form equation for predicting the hydraulic conductivity of unsaturated soils," Soil Science Society of America Journal, Vol.44, No.5, pp.35-53.
  23. Wayllace, A. and Lu, N. (2012), "A Transient Water Release and Imbibitions Method for Rapidly Measuring Wetting and Drying Soil Water Retention and Hydraulic Conductivity Functions," Geotechnical Testing Journal, Vol.35, No.1, pp.103-117.

Cited by

  1. Analysis of Rainfall Induced Infiltration Considering Occluded Air in Unsaturated Soils vol.54, pp.5, 2012, https://doi.org/10.5389/KSAE.2012.54.5.129
  2. Influence of Soil Characteristic and Rainfall Intensity on Matric Suction of Unsaturated Weathered Soil Slope vol.33, pp.3, 2013, https://doi.org/10.12652/Ksce.2013.33.3.1017
  3. Instability Analysis of Unsaturated Soil Slope Considering Wet Condition vol.33, pp.4, 2013, https://doi.org/10.12652/Ksce.2013.33.4.1489
  4. 정상침투조건에서 흡입응력을 고려한 불포화 무한사면의 안정해석 vol.29, pp.9, 2012, https://doi.org/10.7843/kgs.2013.29.9.5