• 제목/요약/키워드: Saturated flow

검색결과 349건 처리시간 0.023초

층류박리 후향계단 유동의 이중주파수 가진 (Double Frequency Forcing of the Laminar Separated Flow over a Backward-Facing Step)

  • 김성욱;최해천;유정열
    • 대한기계학회논문집B
    • /
    • 제27권8호
    • /
    • pp.1023-1032
    • /
    • 2003
  • The effect of local forcing on the separated flow over a backward-facing step is investigated through hot-wire measurements and flow visualization with multi-smoke wires. The boundary layer upstream of the separation point is laminar and the Reynolds number based on the free stream velocity and the step height is 13800. The local forcing is given from a slit located at the step edge and the forcing signal is always defined when the wind tunnel is in operation. In case of single frequency forcing, the streamwise velocity and the reattachment length are measured under forcing with various forcing frequencies. For the range of 0.010〈S $t_{\theta}$〈0.013, the forcing frequency component of the streamwise velocity fluctuation grows exponentially and is saturated at x/h = 0.75 , while its subharmonic component grows following the fundamental and is saturated at x/h = 2.0. However, the saturated value of the subharmonic is much lower than that of the fundamental. It is observed that the vortex formation is inhibited by the forcing at S $t_{\theta}$ = 0.019 . For double frequency forcing, natural instability frequency is adopted as a fundamental frequency and its subharmonic is superposed on it. The fundamental frequency component of the streamwise velocity grows exponentially and is saturated at 0.5 < x/h < 0.75, while its subharmonic component grows following the fundamental and is saturated at x/h= 1.5 . Furthermore, the saturated value of the subharmonic component is much higher than that for the single frequency forcing and is nearly the same or higher than that of the fundamental. It is observed that the subharmonic component does not grow for the narrow range of the initial phase difference. This means that there is a range of the initial phase difference where the vortex parring cannot be enhanced or amplified by double frequency forcing. In addition, this effect of the initial phase difference on the development of the shear layer and the distribution of the reattachment length shows a similar trend. From these observations, it can be inferred that the development of the shear layer and the reattachment length are closely related to the vortex paring.

강우시 불포화토 사면에서의 수리역학적 거동 해석에 관한 연구 (Hydro-mechanical Behavior of Partially Saturated Soil Slopes under Rainfall)

  • 김재홍;임재성;박성완
    • 한국지반공학회논문집
    • /
    • 제28권11호
    • /
    • pp.69-78
    • /
    • 2012
  • 강우로 인한 사면의 안정성 평가를 하기 위한 일반적인 해석 방법들은 강우 침투와 흙의 거동 해석을 개별적으로 구분하여 수행하고 있다. 따라서 상용화된 프로그램과 기 개발된 여러 연구자들의 모델들은 불포화 투수계수를 함수비(또는 흡수력)만의 함수로 정의되어 수리-역학적인 특징을 동시에 고려하지 못하고 있는 실정이다. 그러나 실제 침투수는 사면의 거동을 발생시키고, 지반의 토립자들은 다시 재배열되며 이러한 구성관계에 의해 포화 투수계수 뿐만 아니라 불포화 투수계수도 시간에 따라 변화하게 된다. 강우로 인한 사면의 불안정성은 예측된 불포화 투수계수 값을 근간으로 사면 내 흡수력 감소를 계산함으로써 평가되고 불포화 투수계수는 함수비와 간극률의 함수로 정의되어야 한다. 본 논문에서는 기존의 단계적으로 연결된 해석방법이 불포화 지반에서 침투수를 고려하고 흙의 변형을 예측하는 동시연동해석 결과보다 사면 내부에서 예측되는 흡수력의 변화가 시간에 따라 상대적으로 빠르게 감소함을 보여주고 있다.

3D thermo-hydro-mechanical coupled discrete beam lattice model of saturated poro-plastic medium

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • 제9권2호
    • /
    • pp.125-145
    • /
    • 2020
  • In this paper, we present a 3D thermo-hydro-mechanical coupled discrete beam lattice model of structure built of the nonisothermal saturated poro-plastic medium subjected to mechanical loads and nonstationary heat transfer conditions. The proposed model is based on Voronoi cell representation of the domain with cohesive links represented as inelastic Timoshenko beam finite elements enhanced with additional kinematics in terms of embedded strong discontinuities in axial and both transverse directions. The enhanced Timoshenko beam finite element is capable of modeling crack formation in mode I, mode II and mode III. Mode I relates to crack opening, mode II relates to in-plane crack sliding, and mode III relates to the out-of-plane shear sliding. The pore fluid flow and heat flow in the proposed model are governed by Darcy's law and Fourier's law for heat conduction, respectively. The pore pressure field and temperature field are approximated with linear tetrahedral finite elements. By exploiting nodal point quadrature rule for numerical integration on tetrahedral finite elements and duality property between Voronoi diagram and Delaunay tetrahedralization, the numerical implementation of the coupling results with additional pore pressure and temperature degrees of freedom placed at each node of a Timoshenko beam finite element. The results of several numerical simulations are presented and discussed.

Stability analyses of dual porosity soil slope

  • Satyanaga, Alfrendo;Moon, Sung-Woo;Kim, Jong R.
    • Geomechanics and Engineering
    • /
    • 제28권1호
    • /
    • pp.77-87
    • /
    • 2022
  • Many geotechnical analyses require the investigation of water flow within partially saturated soil zone to incorporate the effect of climatic conditions. It is widely understood that the hydraulic properties of the partially saturated soil should be included in the transient seepage analyses. However, the characteristics of dual porosity soils with dual-mode water retention curve are normally modelled using single-mode mathematical equation for simplification of the analysis. In reality, the rainwater flow can be affected significantly by the dual-mode hydraulic properties of the soil. This paper presents the variations of safety factor for dual porosity soil slope with dual-mode water retention curve and dual-mode unsaturated permeability. This paper includes the development of the new dual-mode unsaturated permeability to represent the characteristics of soil with the dual-mode water retention curve. The finite element analyses were conducted to examine the role of dual-mode water retention curve and dual-mode unsaturated permeability on the variations of safety factor under rainfall loading. The results indicate that the safety factor variations of dual porosity soil slope modelled using the dual-mode water retention curve and the unsaturated permeability equation are lower than those of dual porosity slope modelled using single-mode water retention curve and unsaturated permeability equations.

Comparison of Saturated and Unsaturated Water Flows through Pavement Systems

  • Lim, Yu-Jin;Hue, Nguyen Tien
    • 한국방재학회 논문집
    • /
    • 제9권3호
    • /
    • pp.9-17
    • /
    • 2009
  • 현재까지의 일반적인 도로하부 배수설계방법은 구성층이 완전포화 되었다는 가정하에 현장실험결과 및 이론적인 해석해를 바탕으로 개발되었다. 본 연구에서는 포장하부구성층의 불포화상태가 포장체의 배수에 미치는 영향을 분석하였다. 상용의 유한요소해석 프로그램인 SEEP/W를 이용하여 불포화상태에서의 포장하부구성층과 그 투수특성을 달리하여 포장하부층에서의 배수효과를 분석하였다. 반면 현재 포장하부배수해석을 위하여 가장 널리 사용되는 미 연방도로국 개발 DRIP 프로그램은 포장하부구 성층이 완전포화 되어있다고 가정한다. 불포화와 포화가정에 따른 배수효과의 차이를 비교, 분석하였으며 불포화가정의 경우 배수시간이 포화에 비하여 크게 오래 걸려 배수효과가 떨어짐이 확인되었다.

Numerical prediction of a flashing flow of saturated water at high pressure

  • Jo, Jong Chull;Jeong, Jae Jun;Yun, Byong Jo;Moody, Frederick J.
    • Nuclear Engineering and Technology
    • /
    • 제50권7호
    • /
    • pp.1173-1183
    • /
    • 2018
  • Transient fluid velocity and pressure fields in a pressurized water reactor (PWR) steam generator (SG) secondary side during the blowdown period of a feedwater line break (FWLB) accident were numerically simulated employing the saturated water flashing model. This model is based on the assumption that compressed water in the SG is saturated at the beginning and decompresses into the two-phase region where saturated vapor forms, creating a mixture of steam bubbles in water by bulk boiling. The numerical calculations were performed for two cases of which the outflow boundary conditions are different from each other; one is specified as the direct blowdown discharge to the atmosphere and the other is specified as the blowdown discharge to an extended calculation domain with atmospheric pressure on its boundary. The present simulation results obtained using the two different outflow boundary conditions were discussed through a comparison with the predictions using a simple non-flashing model neglecting the effects of phase change. In addition, the applicability of each of the non-flashing water discharge and saturated water flashing models for the confirmatory assessments of new SG designs was examined.

Frequency Domain Reflectometry System을 이용한 포화 다공질매질의 유전율 측정을 위한 연구 (A Study on the Determination of Dielectric Constant of Saturated Porous Media Using Frequency Domain Reflectometry System)

  • 김만일;정교철
    • 지질공학
    • /
    • 제14권2호
    • /
    • pp.179-187
    • /
    • 2004
  • Frequency Domain Reflectometry(FDR) system과 길이 7cm의 측정센서를 사용하여 에탄을 믹싱리퀴드(EML)를 주입함으로씨 포화된 흙의 유전율상수 변화를 파악하기 위한 실내실험을 실시하였다. 측정센서에 대한 유전율 측정 범위의 확인 및 물과 동일한 비중을 갖는 EML이 포화된 흙의 공극을 통하여 이동 경로를 파악하기 위함이다. EML 확산실험에서는 포화 흙 칼럼 상단부의 배출구가 EML 주입구로부터 이격될수록 포화 흙의 공극을 통한 EML의 확산범위가 확대됨을 확인하였다. 그리고 EML 유동실험의 결과에서는 포화된 흙 칼럼에 대한 주입과 동시에 일정한 간격으로 설치된 모든 측정센서에서 유전율의 변화를 파악하였다. 따라서 EML 주입에 따른 포화 흑의 공극 내에 존재하는 물의 치환이 충분히 가능하며 공극을 통한 이동성도 함께 확인하였다.

Experimental and numerical investigation of closure time during artificial ground freezing with vertical flow

  • Jin, Hyunwoo;Go, Gyu-Hyun;Ryu, Byung Hyun;Lee, Jangguen
    • Geomechanics and Engineering
    • /
    • 제27권5호
    • /
    • pp.433-445
    • /
    • 2021
  • Artificial ground freezing (AGF) is a commonly used geotechnical support technique that can be applied in any soil type and has low environmental impact. Experimental and numerical investigations have been conducted to optimize AGF for application in diverse scenarios. Precise simulation of groundwater flow is crucial to improving the reliability these investigations' results. Previous experimental research has mostly considered horizontal seepage flow, which does not allow accurate calculation of the groundwater flow velocity due to spatial variation of the piezometric head. This study adopted vertical seepage flow-which can maintain a constant cross-sectional area-to eliminate the limitations of using horizontal seepage flow. The closure time is a measure of the time taken for an impermeable layer to begin to form, this being the time for a frozen soil-ice wall to start forming adjacent to the freeze pipes; this is of great importance to applied AGF. This study reports verification of the reliability of our experimental apparatus and measurement system using only water, because temperature data could be measured while freezing was observed visually. Subsequent experimental AFG tests with saturated sandy soil were also performed. From the experimental results, a method of estimating closure time is proposed using the inflection point in the thermal conductivity difference between pore water and pore ice. It is expected that this estimation method will be highly applicable in the field. A further parametric study assessed factors influencing the closure time using a two-dimensional coupled thermo-hydraulic numerical analysis model that can simulate the AGF of saturated sandy soil considering groundwater flow. It shows that the closure time is affected by factors such as hydraulic gradient, unfrozen permeability, particle thermal conductivity, and freezing temperature. Among these factors, changes in the unfrozen permeability and particle thermal conductivity have less effect on the formation of frozen soil-ice walls when the freezing temperature is sufficiently low.