• 제목/요약/키워드: Saturated cohesive soil

검색결과 13건 처리시간 0.023초

점성토의 회복탄성계수($M_r$)에 대한 포화도의 영향 (Effect of Saturation on Resilient Modulus of Cohesive soils as subgrade)

  • 김동규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1140-1147
    • /
    • 2005
  • The objective of this study was to identify the effect of the degree of saturation on the resilient modulus of cohesive soils as subgrade. Six representative cohesive soils representing A-4, A-6, and A-7-6 soil types collected from road construction sites across Ohio, were tested in the laboratory to determine their basic engineering properties. Resilient modulus tests were conducted on unsaturated cohesive soils at optimum moisture content, and samples compacted to optimum conditions but allowed to fully saturate. The subgrade compacted at optimum moisture content may be fully saturated due to seasonal change. Laboratory tests on fully saturated cohesive soils showed that the resilient modulus of saturated soils decreased to less than half that of soil specimens tested at optimum moisture content. The reduction of resilient modulus would possibly be caused by the buildup of pore water pressure. In resilient modulus testing performed in this study on saturated samples, pore water pressure increases were observed. Pore water pressure and residual pore water pressure gradually increased with an increase in deviator stress.

  • PDF

Characteristic study of bell-shaped anchor installed within cohesive soil

  • Das, Arya;Bera, Ashis Kumar
    • Geomechanics and Engineering
    • /
    • 제27권5호
    • /
    • pp.497-509
    • /
    • 2021
  • A large deformation FEM (Finite Element Method) based numerical analysis has been performed to study the behaviour of the bell-shaped anchor embedded in undrained saturated (cohesive) soil with the help of finite element based software ABAQUS. A typical model anchor with bell-diameter of 0.125 m, embedded in undrained saturated soil with varying cohesive strength (from 5 kN/m2 to 200 kN/m2) has been chosen for studying the characteristic behaviour of the bell-shaped anchor installed in cohesive soil. Breakout factors have been evaluated for each case and verified with the results of experimental model tests for three different types of soil samples. The maximum value of breakout factor was found as about 8.5 within a range of critical embedment ratio of 2.5 to 3. An explicit model has been developed to estimate the breakout factor (Fc) for uplift capacity of bell-shaped anchor within clay mass in terms of H/D ratio (embedment ratio). It was also found that, the ultimate uplift capacity of the anchor increases with the increase of the value of cohesive strength of the soil and H/D ratio. The empirical equation developed in the present investigation is usable within the range of cohesion value and H/D ratio from 5 kN/m2 to 200 kN /m2 and 0.5 to 3.0 respectively. The proposed model has been validated against data obtained from a series of model tests carried out in the present investigation. From the stress-profile analysis of the soil mass surrounding the anchor, occurrence of stress concentration is found to be generated at the joint of anchor shaft and bell. It was also found that the vertical and horizontal stresses surrounding the anchor diminish at about a distance of 0.3 m and 0.15 m respectively.

Electrokinetic 기술에 의한 점성토의 중금속 오염물 제거 (Removal of Heavy Metal Contaminants from Cohesive Soil by Electrokinetics)

  • 정하익;강병희
    • 한국지반공학회지:지반
    • /
    • 제13권6호
    • /
    • pp.123-138
    • /
    • 1997
  • 중금속으로 오염된 점성토의 정화에 대한 electrokinetic기술의 효율을 연구하기 위하여 포화 해성점토를 납으로 오염시켜 전기삼투시험을 수행하였다. 이를 위하여 실험조건으로서 납의 오염농도 500, 5,000, 50,000mg/kg, 공급전류 10, 50, 100mA, 가동시간 5, 15, 30일 및 3가지의 효율 향상기법을 적용하였다. 유입수와 유출수의 pH, 전기삼투유량 및 전기전도도를 시험중에 측정하고 또 시험 완료후에 공시체전 길이에 걸쳐 pH및 잔존 납농도를 측정하여 제시하였다. 시험결과에 의해서 electrokinetic 기술이 효과적인 방법이라는 결론을 얻었다. 또한 음극에 침강된 수산화납을 용해시키기위해 초산을 가하게 되면 정화효율이 향상된다는 사실을 알 수 있었다.

  • PDF

Proposing new models to predict pile set-up in cohesive soils

  • Sara Banaei Moghadam;Mohammadreza Khanmohammadi
    • Geomechanics and Engineering
    • /
    • 제33권3호
    • /
    • pp.231-242
    • /
    • 2023
  • This paper represents a comparative study in which Gene Expression Programming (GEP), Group Method of Data Handling (GMDH), and multiple linear regressions (MLR) were utilized to derive new equations for the prediction of time-dependent bearing capacity of pile foundations driven in cohesive soil, technically called pile set-up. This term means that many piles which are installed in cohesive soil experience a noticeable increase in bearing capacity after a specific time. Results of researches indicate that side resistance encounters more increase than toe resistance. The main reason leading to pile setup in saturated soil has been found to be the dissipation of excess pore water pressure generated in the process of pile installation, while in unsaturated conditions aging is the major justification. In this study, a comprehensive dataset containing information about 169 test piles was obtained from literature reviews used to develop the models. to prepare the data for further developments using intelligent algorithms, Data mining techniques were performed as a fundamental stage of the study. To verify the models, the data were randomly divided into training and testing datasets. The most striking difference between this study and the previous researches is that the dataset used in this study includes different piles driven in soil with varied geotechnical characterization; therefore, the proposed equations are more generalizable. According to the evaluation criteria, GEP was found to be the most effective method to predict set-up among the other approaches developed earlier for the pertinent research.

흙의 공학적 성질에 관한 연구 (Study on Engineering Properties of Earth Materials)

  • 김주범;윤충섭
    • 한국농공학회지
    • /
    • 제17권3호
    • /
    • pp.3815-3832
    • /
    • 1975
  • This study was made to investigate various engineering properties of earth materials resulting from their changes in density and moisture content. The results obtained in this study are summarized as follows: 1. The finner the grain size is, the bigger the Optimum Moisture Content(OMC) is, showing a linear relationship between percent passing of NO. 200 Sieve (n) and OMC(Wo) which can be represented by the equation Wo=0.186n+8.3 2. There is a linear relationship of inverse proportion between OMC and Maximum Dry Density (MDD) which can be represented by the equation ${\gamma}$d=2.167-0.026Wo 3. There is an exponential curve relationship between void ratio (es) and MDD whose equation can be expressed ${\gamma}$d=2.67e-0.4550.9), indicating that as MDD increases, void ratio decreases. 4. The coefficent of permeability increases in proportion to decrease of the MDD and this increase trend is more obvious in coarse material than in fine material, and more obvious in cohesionless soil than in cohesive soil. 5. Even in the same density, the coefficient of permeability is smaller in wet than in dry from the Optimum Moisture Content. 6. Showing that unconfined compressive strength increases in proportion to dry density increase, in unsaturated state the compacted in dry has bigger strength value than the compacted in wet. On the other hand, in saturated state, the compacted in dry has a trend to be smaller than the compacted in wet. 7. Even in the same density, unconfined compressive strength increases in proportion to cohesion, however, when in small density and in saturated state, this relationship are rejected. 8. In unsaturated state, cohesion force is bigger in dry than in wet from OMC. In saturated state, on the other hand, it is directly praportional to density. 9. Cohesion force decreases in proportion to compaction rate decrease. And this trend is more evident in coarse matorial than in fine material. 10. Internal friction angle of soil is not influenced evidently on the changes of moisture content and compaction rate in unsaturated state, On the other hand in saturated state it is influenced density. 11. Cohesion force is directly proportional to unconfined compressive strength(qu), indicating that it has approximately 35 percent of qu in unsaturated state and approximately 70 percent of qu in saturated state.

  • PDF

Failure mechanisms in coupled poro-plastic medium

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Nikolic, Mijo
    • Coupled systems mechanics
    • /
    • 제7권1호
    • /
    • pp.43-59
    • /
    • 2018
  • The presence of the pore fluid strongly influences the reponse of the soil subjected to external loading and in many cases increases the risk of final failure. In this paper, we propose the use of a discrete beam lattice model with the aim to investigate the coupling effects of the solid and fluid phase on the response and failure mechanisms in the saturated soil. The discrete cohesive link lattice model used in this paper, is based on inelastic Timoshenko beam finite elements with enhanced kinematics in axial and transverse direction. The coupling equations for the soil-pore fluid interaction are derived from Terzaghi's principle of effective stresses, Biot's porous media theory and Darcy's law for fluid flow through porous media. The application of the model in soil mechanics is illustrated through several numerical simulations.

Pullout capacity of shallow inclined anchor in anisotropic and nonhomogeneous undrained clay

  • Bhattacharya, Paramita
    • Geomechanics and Engineering
    • /
    • 제13권5호
    • /
    • pp.825-844
    • /
    • 2017
  • This study aimed to find out the pullout capacity of inclined strip anchor plate embedded in anisotropic and nonhomogeneous fully saturated cohesive soil in undrained condition. The ultimate pullout load has been found out by using numerical lower bound finite element analysis with linear programming. The undrained pullout capacity of anchor plate of width B is determined for different embedment ratios (H/B) varying from 3 to 7 and various inclination of anchor plates ranging from $0^{\circ}$ to $90^{\circ}$ with an interval of $15^{\circ}$. In case of anisotropic fully saturated clay the variation of cohesion with direction has been considered by varying the ratio of the cohesion along vertical direction ($c_v$) to the cohesion along horizontal direction ($c_h$). In case of nonhomogeneous clay the cohesion of the undrained clay has been considered to be increased with depth below ground surface keeping $c_v/c_h=1$. The results are presented in terms of pullout capacity factor ($F_{c0}=p_u/c_H$) where $p_u$ is the ultimate pullout stress along the anchor plate at failure and $c_H$ is the cohesion in horizontal direction at the level of the middle point of the anchor plate. It is observed that the pullout capacity factor increases with an increase in anisotropic cohesion ratio ($c_v/c_h$) whereas the pullout capacity factor decreases with an increase in undrained cohesion of the soil with depth.

Bearing capacity of strip footings on unsaturated soils under combined loading using LEM

  • Afsharpour, Siavash;Payan, Meghdad;Chenari, Reza Jamshidi;Ahmadi, Hadi;Fathipour, Hessam
    • Geomechanics and Engineering
    • /
    • 제31권2호
    • /
    • pp.223-235
    • /
    • 2022
  • Bearing capacity of shallow foundations is often determined for either dry or saturated soils. In some occasions, foundations may be subjected to external loading which is inclined and/or eccentric. In this study, the ultimate bearing capacity of shallow foundations resting on partially saturated coarse-grained cohesionless and fine-grained cohesive soils subjected to a wide range of combined vertical (V) - horizontal (H) - moment (M) loadings is rigorously evaluated using the well-established limit equilibrium method. The unified effective stress approach as well as the suction stress concept is effectively adopted so as to simulate the behaviour of the underlying unsaturated soil medium. In order to obtain the bearing capacity, four equilibrium equations are solved by adopting Coulomb failure mechanism and Bishop effective stress concept and also considering a linear variation of the induced matric suction beneath the foundation. The general failure loci of the shallow foundations resting on unsaturated soils at different hydraulic conditions are presented in V - H - M spaces. The results indicate that the matric suction has a marked influence on the bearing capacity of shallow foundations. In addition, the effect of induced suction on the ultimate bearing capacity of obliquely-loaded foundations is more pronounced than that of the eccentrically-loaded footings.

EARTH DAM의 비탈면 기울기 결정에 관한 연구 (A Study on Side Slope Determination of Earth Dam)

  • 이원희;김시원
    • 한국농공학회지
    • /
    • 제23권1호
    • /
    • pp.86-102
    • /
    • 1981
  • The soil test data of 28 earth dams, scheduled to be constructed in Kore3, were selected for this study. The safety factors of their side slops were computed using Fellenius' "slice Method" by computer. The results summarized in this study are as follows; 1. Dam sections can be easily determined by fig.10 without a time consuming trial and error calculations of assumed sections. 2. For the economical design of earth dam sections, it was found that more cohesive soil was suitable for lower dams(dam height less than 25m) and soils with a higher friction angle was better for higher dams 3. In the case that used soil materials have the same Internal friction angle, side slope increase was almost same. 4. The relationship between side slope and friction angle was found as log.S=a tan ø+b (Fig. 7) 5. The relationship between side slope and cohesion (c) was also found as log. S=a c+b (Fig. 8) 6. The change of safety factors due to the change of central core materials was very little (Table-2) 7. The decrease of safety factors according to the unit weight increase of embankment materials was negligible. 8. In general the relationship between the wet unit weight and the saturated unit weight was r sat = (rt)$^2$+0. 140. This study will contribute to the determination of economic and safe planning and designing of earth dams, embankments and cutting side slopes.

  • PDF

이방압밀이 반복하중을 받은 과압밀점토의 비배수전단강도에 미치는 영향 (Effects of Anisotropic Consolidation on the Postcyclic Undrained Shear Strength of an Overconsolidated Clay)

  • 강병희;윤형석;박동진
    • 한국지반공학회지:지반
    • /
    • 제14권1호
    • /
    • pp.37-48
    • /
    • 1998
  • 압밀응력비, 과압밀비 및 반복재하를 포함하는 압밀응력이력이 점성토의 비배수전단강도에 미치는 영향에 관해서 연구하였다. $(S_u/\sigma'_{vc})ckou/(S_U/\sigma_{vc})cuv$의 강도비는 과압밀비가 증가함에 따라 증가됨이 관찰되었다. Mayne(1980)이 과압밀점토의 비배수전단강도를 추정하기 위해 제안한 식(1)과 Yasuhara(1994)가 반복재하로 인해 발생된 간극수압이 소산된 후의 비 배수전단강도를 구하기 위해 제안한 식(4)는 Ko압밀상태에서도 비교적 잘 적용될 수 있음을 알 수 있었다. 또한 이들 두 식중의 원위치전단강도를 위한 한계상태간극수압정수 A.값은 조금 과압밀된 점토의 경우(OCR< 3) 표준압밀시험에 의해서 구할 것을 제안하였다.

  • PDF