• Title/Summary/Keyword: Satellite observations

Search Result 463, Processing Time 0.028 seconds

Initial Operation and Preliminary Results of the Instrument for the Study of Stable/Storm-Time Space (ISSS) on Board the Next Generation Small Satellite-1 (NEXTSat-1)

  • Kim, Eojin;Yoo, Ji-Hyeon;Kim, Hee-Eun;Seo, Hoonkyu;Ryu, Kwangsun;Sohn, Jongdae;Lee, Junchan;Seon, Jongho;Lee, Ensang;Lee, Dae-Young;Min, Kyoungwook;Kang, Kyung-In;Lee, Sang-Yun;Kang, Juneseok
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.209-218
    • /
    • 2020
  • This paper describes the initial operations and preliminary results of the Instrument for the study of Stable/Storm-time Space (ISSS) onboard the microsatellite Next Generation Small Satellite-1 (NEXTSat-1), which was launched on December 4, 2018 into a sun-synchronous orbit at an altitude of 575 km with an orbital inclination angle of 97.7°. The spacecraft and the instruments have been working normally, and the results from the observations are in agreement with those from other satellites. Nevertheless, improvement in both the spacecraft/instrument operation and the analysis is suggested to produce more fruitful scientific results from the satellite operations. It is expected that the ISSS observations will become the main mission of the NEXTSat-1 at the end of 2020, when the technological experiments and astronomical observations terminate after two years of operation.

Crew`s Remote Sensing Researches on the International Space Station

  • Lee Joo-Hee;Choi Gi-Hyuk;Kim Yeon-Kyu;Kim Jong-Woo
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.386-388
    • /
    • 2004
  • The International Space Station (ISS) offers research opportunities to researchers through crew's space mission in the field of remote sensing. ISS provides the facilities to place and operate experiment equipments in a variety of fields, especially, microgravity experiments and Earth observations. This paper is intended to give readers a brief introduction to the ISS utilization and the capabilities for remote sensing researches. We investigate what kind of crew missions and payloads should be developed for remote sensing researches on the ISS.

  • PDF

SUB-MILLIARCSECOND ACCURACY WITH THE STRUVE ASTROMETRIC SATELLITE

  • YERSHOV V. N.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.427-428
    • /
    • 1996
  • The Struve astrometric satellite which is being developed at Pulkovo Observatory in cooperation with Krasno-yarsk Institute of Applied Mechanics, S.I. Vavilov's State Optical Institute and some others space instrumentation institutes, will produce observations of a second epoch for the Hipparcos stars. The project is devoted to maintaining the Hipparcos coordinate system as well as extending it to a density of $\approx$ 100 stars per square degree. Possibilities of submilliarcsecond accuracy of observations with single aperture on-board telescopes are discussed. Requirements to the optical scheme and to the dynamic properties of the spacecraft are formulated. CCD and microchannel plates are discussed as a focal assembly detectors.

  • PDF

Aerosol Direct Radiative Forcing by Three Dimensional Observations from Passive- and Active- Satellite Sensors (수동형-능동형 위성센서 관측자료를 이용한 대기 에어러솔의 3차원 분포 및 복사강제 효과 산정)

  • Lee, Kwon-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.2
    • /
    • pp.159-171
    • /
    • 2012
  • Aerosol direct radiative forcing (ADRF) retrieval method was developed by combining data from passive and active satellite sensors. Aerosol optical thickness (AOT) retrieved form the Moderate Resolution Imaging Spectroradiometer (MODIS) as a passive visible sensor and aerosol vertical profile from to the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) as an active laser sensor were investigated an application possibility. Especially, space-born Light Detection and Ranging (Lidar) observation provides a specific knowledge of the optical properties of atmospheric aerosols with spatial, temporal, vertical, and spectral resolutions. On the basis of extensive radiative transfer modeling, it is demonstrated that the use of the aerosol vertical profiles is sensitive to the estimation of ADRF. Throughout the investigation of relationship between aerosol height and ADRF, mean change rates of ADRF per increasing of 1 km aerosol height are smaller at surface than top-of-atmosphere (TOA). As a case study, satellite data for the Asian dust day of March 31, 2007 were used to estimate ADRF. Resulting ADRF values were compared with those retrieved independently from MODIS only data. The absolute difference values are 1.27% at surface level and 4.73% at top of atmosphere (TOA).

Quantifying the 2022 Extreme Drought Using Global Grid-Based Satellite Rainfall Products (전지구 강수관측위성 기반 격자형 강우자료를 활용한 2022년 국내 가뭄 분석)

  • Mun, Young-Sik;Nam, Won-Ho;Jeon, Min-Gi;Lee, Kwang-Ya;Do, Jong-Won;Isaya Kisekka
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.4
    • /
    • pp.41-50
    • /
    • 2024
  • Precipitation is an important component of the hydrological cycle and a key input parameter for many applications in hydrology, climatology, meteorology, and weather forecasting research. Grid-based satellite rainfall products with wide spatial coverage and easy accessibility are well recognized as a supplement to ground-based observations for various hydrological applications. The error properties of satellite rainfall products vary as a function of rainfall intensity, climate region, altitude, and land surface conditions. Therefore, this study aims to evaluate the commonly used new global grid-based satellite rainfall product, Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), using data collected at different spatial and temporal scales. Additionally, in this study, grid-based CHIRPS satellite precipitation data were used to evaluate the 2022 extreme drought. CHIRPS provides high-resolution precipitation data at 5 km and offers reliable global data through the correction of ground-based observations. A frequency analysis was performed to determine the precipitation deficit in 2022. As a result of comparing droughts in 2015, 2017, and 2022, it was found that May 2022 had a drought frequency of more than 500 years. The 1-month SPI in May 2022 indicated a severe drought with an average value of -1.8, while the 3-month SPI showed a moderate drought with an average value of 0.6. The extreme drought experienced in South Korea in 2022 was evident in the 1-month SPI. Both CHIRPS precipitation data and observations from weather stations depicted similar trends. Based on these results, it is concluded that CHIRPS can be used as fundamental data for drought evaluation and monitoring in unmeasured areas of precipitation.

Assessment and Validation of New Global Grid-based CHIRPS Satellite Rainfall Products Over Korea (전지구 격자형 CHIRPS 위성 강우자료의 한반도 적용성 분석)

  • Jeon, Min-Gi;Nam, Won-Ho;Mun, Young-Sik;Kim, Han-Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.2
    • /
    • pp.39-52
    • /
    • 2020
  • A high quality, long-term, high-resolution precipitation dataset is an essential in climate analyses and global water cycles. Rainfall data from station observations are inadequate over many parts of the world, especially North Korea, due to non-existent observation networks, or limited reporting of gauge observations. As a result, satellite-based rainfall estimates have been used as an alternative as a supplement to station observations. The Climate Hazards Group Infrared Precipitation (CHIRP) and CHIRP combined with station observations (CHIRPS) are recently produced satellite-based rainfall products with relatively high spatial and temporal resolutions and global coverage. CHIRPS is a global precipitation product and is made available at daily to seasonal time scales with a spatial resolution of 0.05° and a 1981 to near real-time period of record. In this study, we analyze the applicability of CHIRPS data on the Korean Peninsula by supplementing the lack of precipitation data of North Korea. We compared the daily precipitation estimates from CHIRPS with 81 rain gauges across Korea using several statistical metrics in the long-term period of 1981-2017. To summarize the results, the CHIRPS product for the Korean Peninsula was shown an acceptable performance when it is used for hydrological applications based on monthly rainfall amounts. Overall, this study concludes that CHIRPS can be a valuable complement to gauge precipitation data for estimating precipitation and climate, hydrological application, for example, drought monitoring in this region.

Limitations of Electromagnetic Ion Cyclotron Wave Observations in Low Earth Orbit

  • Hwang, Junga;Kim, Hyangpyo;Park, Jaeheung;Lee, Jaejin
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.31-37
    • /
    • 2018
  • Pc1 pulsations are geomagnetic fluctuations in the frequency range of 0.2 to 5 Hz. There have been several observations of Pc1 pulsations in low earth orbit by MAGSAT, DE-2, Viking, Freja, CHAMP, and SWARM satellites. However, there has been a clear limitation in resolving the spatial and temporal variations of the pulsation by using a single-point observation by a single satellite. To overcome such limitations of previous observations, a new space mission was recently initiated, using the concept of multi-satellites, named the Small scale magNetospheric and Ionospheric Plasma Experiments (SNIPE). The SNIPE mission consists of four nanosatellites (~10 kg), which will be launched into a polar orbit at an altitude of 600 km (TBD) in 2020. Four satellites will be deployed in orbit, and the distances between each satellite will be controlled from 10 to 1,000 km by a high-end formation-flying algorithm. One of the possible science targets of the SNIPE mission is observing electromagnetic ion cyclotron (EMIC) waves. In this paper, we report on examples of observations, showing the limitations of previous EMIC observations in low earth orbit, and suggest possibilities to overcome those limitations through a new mission.

Preliminary Products of Precise Orbit Determination Using Satellite Laser Ranging Observations for ILRS AAC

  • Kim, Young-Rok;Park, Sang-Young;Park, Eun-Seo;Lim, Hyung-Chul
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.3
    • /
    • pp.275-285
    • /
    • 2012
  • In this study, we present preliminary results of precise orbit determination (POD) using satellite laser ranging (SLR) observations for International Laser Ranging Service (ILRS) Associate Analysis Center (AAC). Using SLR normal point observations of LAGEOS-1, LAGEOS-2, ETALON-1, and ETALON-2, the NASA/GSFC GEODYN II software are utilized for POD. Weekly-based orbit determination strategy is applied to process SLR observations and the post-fit residuals check, and external orbit comparison are performed for orbit accuracy assessment. The root mean square (RMS) value of differences between observations and computations after final iteration of estimation process is used for post-fit residuals check. The result of ILRS consolidated prediction format (CPF) is used for external orbit comparison. Additionally, we performed the precision analysis of each ILRS station by post-fit residuals. The post-fit residuals results show that the precisions of the orbits of LAGEOS-1 and LAGEOS-2 are 0.9 and 1.3 cm, and those of ETALON-1 and ETALON-2 are 2.5 and 1.9 cm, respectively. The orbit assessment results by ILRS CPF show that the radial accuracies of LAGEOS-1 and LAGEOS-2 are 4.0 cm and 5.3 cm, and the radial accuracies of ETALON-1 and ETALON-2 are 30.7 cm and 7.2 cm. These results of station precision analysis confirm that the result of this study is reasonable to have implications as preliminary results for administrating ILRS AAC.

Monitoring Time-Series Subsidence Observation in Incheon Using X-Band COSMO-SkyMed Synthetic Aperture Radar

  • Sang-Hoon Hong
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.141-150
    • /
    • 2024
  • Ground subsidence in urban areas is mainly caused by anthropogenic factors such as excessive groundwater extraction and underground infrastructure development in the subsurface composed of soft materials. Global Navigation Satellite System data with high temporal resolution have been widely used to measure surface displacements accurately. However, these point-based terrestrial measurements with the low spatial resolution are somewhat limited in observing two-dimensional continuous surface displacements over large areas. The synthetic aperture radar interferometry (InSAR) technique can construct relatively high spatial resolution surface displacement information with accuracy ranging from millimeters to centimeters. Although constellation operations of SAR satellites have improved the revisit cycle, the temporal resolution of space-based observations is still low compared to in-situ observations. In this study, we evaluate the extraction of a time-series of surface displacement in Incheon Metropolitan City, South Korea, using the small baseline subset technique implemented using the commercial software, Gamma. For this purpose, 24 COSMO-SkyMed X-band SAR observations were collected from July 12, 2011, to August 27, 2012. The time-series surface displacement results were improved by reducing random phase noise, correcting residual phase due to satellite orbit errors, and mitigating nonlinear atmospheric phase artifacts. The perpendicular baseline of the collected COSMO-SkyMed SAR images was set to approximately 2-300 m. The surface displacement related to the ground subsidence was detected approximately 1 cm annually around a few Incheon Subway Line 2 route stations. The sufficient coherence indicates that the satellite orbit has been precisely managed for the interferometric processing.