• 제목/요약/키워드: Satellite images

Search Result 1,887, Processing Time 0.035 seconds

Development of Proto-type Program for Automatic Change Detection and Cueing of Multi-temporal KOMPSAT-5 SAR Imagery (다중시기 KOMPSAT-5 SAR 위성영상의 자동변화탐지알림 프로토타입 프로그램 개발)

  • Chae, Sung-Ho;Oh, Kwan-Young;Lee, Sungu
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1955-1969
    • /
    • 2022
  • Most of the public and private users who use national satellite information such as the KOMPSAT series mainly use Electro-Optical and Infrared (EO/IR) satellite images, and the utilization of Synthetic Aperture Radar (SAR) images is relatively insufficient. As KOMPSAT-5 currently in operation, KOMPSAT-6 and micro SAR satellite constellation systems are scheduled to be launched in the future, the demand for utilization of SAR satellite information is increasing in various fields. Accordingly, it is necessary to possess core technology for SAR utilization that can support the utilization of SAR satellite information for users. Due to the all-weather properties of SAR system, change detection technology is a key application technology. However, until now, the development of technology that automatic change detection and cueing using SAR images is insufficient. Through this study, the requirements of automatic change detection and cueing function using multi-temporal KOMPSAT-5 SAR satellite images were derived and a prototype program was developed. This prototype program aims to secure independent SAR utilization technology and promote the utilization of domestic SAR satellite information by practitioners in public sector organizations in Korea.

A Study to Improve the Accuracy of Segmentation and Classification of Mosaic Images over the Korean Peninsula (한반도 모자이크 영상의 분할 및 분류 정확도 향상을 위한 연구)

  • Moon, Jiyoon;Lee, Kwang Jae
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.1943-1949
    • /
    • 2021
  • In recent years, as the demand of high-resolution satellite images increases due to the miniaturization and constellation of satellites, various efforts to support users to utilize satellite images more conveniently are performed. Accordingly, the Korea Aerospace Research Institute produces and provides mosaic images on the Korean Peninsula every year to improve the convenience of users in the public sector and activate the use of satellite images. In order to increase the utilization of mosaic images on the Korean Peninsula, a study on satellite image segmentation and classification using mosaic images was attempted. However, since mosaic images provide only R, G, and B bands and processes such as image sharpening and color balancing are applied, there is a limitation that the spectral information of original images is distorted, so various indices were extracted and classified using R, G, and B bands to compensate for this. As a result of the study, the accuracy of image classification results using only mosaic images was about 72%, while the accuracy of image classification results using indices extracted from R, G, and B bands together was about 79%. Through this, it was confirmed that when performing image classification using mosaic images on the Korean Peninsula, the image classification results can be improved if the indices extracted from R, G, and B bands are used together. These research results are expected to be applied not only to mosaic images but also to images in which spectral information is limited or only R, G, and B bands are provided.

Utilization Plan Research of High Resolution Images for Efficient River Zone Management (효율적 하천구역관리를 위한 고해상 영상의 활용 방안 연구)

  • Park, Hyeon-Cheol;Kim, Hyoung-Sub;Jo, Yun-Won;Jo, Myung-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.205-211
    • /
    • 2008
  • The river management in Korea had been focused on line based 2D spatial data for the developing river management application system. In this study, the polygon based 3D spatial data such as aerial photos and satellite images were selected and used through comparing their resolution levels for the river environment management. In addition, 1m detailed DEM (Digital Elevation Model) was constructed to implement the real topography information around river so that the damage area scale could be extracted for flood disaster. Also, the social environment thematic maps such as a cadastral map or land cover map could be used to verify the real damage area scale by overlay analysis on aerial photos or satellite images. The construction of these spatial data makes possible to present the real surface information and extract quantitative analysis to support the scientific decision making for establishing the river management policy. For the further study, the lidar surveying data will be considered as the very useful data by offering the real height information of riverbed as the depth of river so that flood simulation can give more reality.

An Automatic Approach for Geometric Correction of Landsat Images

  • Hwang, Tae-Hyun;Chae, Gee-Ju;Park, Jong-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.542-542
    • /
    • 2002
  • Geometric correction is a critical step to remove geometric distortions in satellite images. For correct geometric correction, Ground Control Points (GCPs) have to be chosen carefully to guarantee the quality of corrected satellite images. In this paper, we present an automatic approach for geometric correction by constructing GCP Chip database (GCP DB) that is a collection of pieces of images with geometric information. The GCP DB is constructed by exploiting Landsat's nadir-viewing property and the constructed GCP DB is combined with a simple block matching algorithm for efficient GCP matching. This approach reduces time and energy for tedious manual geometric correction and promotes usage of Landsat images.

  • PDF

Investigation of Sensor Models for Precise Geolocation of GOES-9 Images

  • Hur Dongseok;Lee Tae-Yoon;Kim Taejung
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.91-94
    • /
    • 2005
  • A numerical formula that presents relationship between a point of a satellite image and its ground position is called a sensor model. For precise geolocation of satellite images, we need an error-free sensor model. However, the sensor model based on GOES ephemeris data has some error, in particular after Image Motion Compensation (IMC) mechanism has been turned off. To solve this problem, we investigate three sensor models: Collinearity model, Direct Linear Transform (DLT) model and Orbit-based model. We apply matching between GOES images and global coastline database and use successful results as control points. With control points we improve the initial image geolocation accuracy using the three models. We compare results from three sensor models that are applied to GOES-9 images. As a result, a suitable sensor model for precise geolocation of GOES-9 images is proposed.

  • PDF

An Implementation of Recoding & Retrieval Method for Video Monitoring System (비디오 감시 시스템을 위한 감시영상의 기록 및 검색 방법 구현)

  • Hwang, Byung-Kon
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.140-144
    • /
    • 2012
  • The classic method of recording and retrieving of images for video monitoring was very inefficient since the system required huge storage capacity. It's because it stored images without separating background and monitored objects. The recording and retrieval method of images for the video monitoring system we proposed in this paper makes it possible to retrieve images easily by using database by the hour and the place. Hence, it retrieve images much more efficiently than the existing method.

A Study on Application Methods of Satellite Images for the Construction Projects over Extreme Cold Regions -Focus on the Construction Case of 2nd Antarctic Base- (극한지 건설사업 진출을 위한 위성영상 활용방안 연구 -남극 제2기지 건설 사례를 중심으로-)

  • Hong, Chang-Hee;Kim, Tae-Hoon;Bae, Gyu-Jin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.4
    • /
    • pp.148-156
    • /
    • 2010
  • For the reasons such as resource development, an interest in the extreme cold regions has been increasing in recent years. Therefore, this study aims to suggest the application methods of satellite images for the construction projects over extreme cold regions. Because extreme cold regions including the Antarctic is generally far and difficult to access, the satellite images are useful to monitor the extreme cold regions. In this study, satellite images can be used in the overall construction process and the application methods presented through the review of the case studies and the related literature.

Analysis of Land Use Change Using High Resolution Satellite Imagery (고해상도 위성영상을 이용한 토지이용변화 분석)

  • Cho, Eun-Rae;Kim, Kyung-Whan;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.3-11
    • /
    • 2009
  • This study aims at proposing that high resolution satellite images could be used to form an urban management plan by calculating the amount of green areas and detecting land use changes in each zoning region within urban planning jurisdiction of Jinju in Gyeongsangnam-do selected as a case study area, analysing imagery of IKONOS and KOMPSAT-2 that are high resolution satellite images. In conclusion, application possibilities of high resolution satellite images as assessment data of urban management administration that help to assess changes in each zoning region are indicated after developing modules based on ArcGIS for calculation and detection of green areas and land use changes and then analysing land use changes and spatial distribution of green areas by using those modules.

  • PDF

Current Status of Application of KOMPSAT Series (최근 다목적실용위성 시리즈 활용 현황)

  • Lee, Kwang-Jae;Oh, Kwan-Young;Lee, Won-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1485-1492
    • /
    • 2020
  • It has been more than 20 years since the launch of KOMPSAT-1, and so far, a total of 5 satellites have been successfully launched. Until now, KOMPSAT has been used in various fields, including the production of various thematic maps, land change, environmental analysis, and marine monitoring. Many researchers have conducted research to process, analyze, and utilize KOMPSAT images. According to the national space development plan, the KOMPSAT series will be continuously developed to meet the demand for satellite images at the national level. If the ultimate purpose of satellite development is to utilize acquired images, systematic research to effectively utilize the developed satellites should be followed. This special issue introduces the recently conducted research on the use of KOMPSAT images.

A Study on the Seamline Estimation for Mosaicking of KOMPSAT-3 Images (KOMPSAT-3 영상 모자이킹을 위한 경계선 추정 방법에 대한 연구)

  • Kim, Hyun-ho;Jung, Jaehun;Lee, Donghan;Seo, Doochun
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1537-1549
    • /
    • 2020
  • The ground sample distance of KOMPSAT-3 is 0.7 m for panchromatic band, 2.8 m for multi-spectral band, and the swath width of KOMPSAT-3 is 16 km. Therefore, an image of an area wider than the swath width (16 km) cannot be acquired with a single scanning. Thus, after scanning multiple areas in units of swath width, the acquired images should be made into one image. At this time, the necessary algorithm is called image mosaicking or image stitching, and is used for cartography. Mosaic algorithm generally consists of the following 4 steps: (1) Feature extraction and matching, (2) Radiometric balancing, (3) Seamline estimation, and (4) Image blending. In this paper, we have studied an effective seamline estimation method for satellite images. As a result, we can estimate the seamline more accurately than the existing method, and the heterogeneity of the mosaiced images was minimized.