• Title/Summary/Keyword: Satellite image data

Search Result 1,198, Processing Time 0.021 seconds

Effects of Environmental Conditions on Vegetation Indices from Multispectral Images: A Review

  • Md Asrakul Haque;Md Nasim Reza;Mohammod Ali;Md Rejaul Karim;Shahriar Ahmed;Kyung-Do Lee;Young Ho Khang;Sun-Ok Chung
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.319-341
    • /
    • 2024
  • The utilization of multispectral imaging systems (MIS) in remote sensing has become crucial for large-scale agricultural operations, particularly for diagnosing plant health, monitoring crop growth, and estimating plant phenotypic traits through vegetation indices (VIs). However, environmental factors can significantly affect the accuracy of multispectral reflectance data, leading to potential errors in VIs and crop status assessments. This paper reviewed the complex interactions between environmental conditions and multispectral sensors emphasizing the importance of accounting for these factors to enhance the reliability of reflectance data in agricultural applications.An overview of the fundamentals of multispectral sensors and the operational principles behind vegetation index (VI) computation was reviewed. The review highlights the impact of environmental conditions, particularly solar zenith angle (SZA), on reflectance data quality. Higher SZA values increase cloud optical thickness and droplet concentration by 40-70%, affecting reflectance in the red (-0.01 to 0.02) and near-infrared (NIR) bands (-0.03 to 0.06), crucial for VI accuracy. An SZA of 45° is optimal for data collection, while atmospheric conditions, such as water vapor and aerosols, greatly influence reflectance data, affecting forest biomass estimates and agricultural assessments. During the COVID-19 lockdown,reduced atmospheric interference improved the accuracy of satellite image reflectance consistency. The NIR/Red edge ratio and water index emerged as the most stable indices, providing consistent measurements across different lighting conditions. Additionally, a simulated environment demonstrated that MIS surface reflectance can vary 10-20% with changes in aerosol optical thickness, 15-30% with water vapor levels, and up to 25% in NIR reflectance due to high wind speeds. Seasonal factors like temperature and humidity can cause up to a 15% change, highlighting the complexity of environmental impacts on remote sensing data. This review indicated the importance of precisely managing environmental factors to maintain the integrity of VIs calculations. Explaining the relationship between environmental variables and multispectral sensors offers valuable insights for optimizing the accuracy and reliability of remote sensing data in various agricultural applications.

Prediction of the Land-surface Environment Changes in the Anmyeon-do Using Fuzzy Logic Operation (퍼지논리연산을 이용한 안면도 지표환경 변화 예측)

  • 장동호;지광훈;이현영
    • Journal of the Korean Geographical Society
    • /
    • v.37 no.4
    • /
    • pp.371-384
    • /
    • 2002
  • It is very important to predict the environmental changes in the land-surface as a way of prevention of sustainable nature. This study investigated the difference between the predicted and actual data of Anmyeon-do from 1981 to 2000 through a fuzzy logic operation using multi-spectral image. According to literature survey, maps, and ground truth data, the types of land-use have changed due primarily to shore reclamation or wild land and grassland fostering before the eighties. After the mid-eighties, however, a number of private residents and commercial stores quickly have spreaded throughout beach resorts and quasi-agricultural and forest areas. Moreover, shore and community regions were severely damaged in the nineties with increased farmland, due to the development of tour places and expansion of city area. The predicted result of the environmental changes in the land-surface using the fuzzy logic operation was almost similar to the state of Anmyeon-do obtained through the satellite image. Particularly, the flat lands near the shore was predicted to change slightly. This area is largely under development, thereby raising concerns on the shore environment. Thus, this method is applicable to conducting research on the change in the land-surface.

Application of KOMPSAT-5 SAR Interferometry by using SNAP Software (SNAP 소프트웨어를 이용한 KOMPSAT-5 SAR 간섭기법 구현)

  • Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_3
    • /
    • pp.1215-1221
    • /
    • 2017
  • SeNtinel's Application Platform (SNAP) is an open source software developed by the European Space Agency and consists of several toolboxes that process data from Sentinel satellite series, including SAR (Synthetic Aperture Radar) and optical satellites. Among them, S1TBX (Sentinel-1 ToolBoX)is mainly used to process Sentinel-1A/BSAR images and interferometric techniques. It provides flowchart processing method such as Graph Builder, and has convenient functions including automatic downloading of DEM (Digital Elevation Model) and image mosaicking. Therefore, if computer memory is sufficient, InSAR (Interferometric SAR) and DInSAR (Differential InSAR) perform smoothly and are widely used recently in the world through rapid upgrades. S1TBX also includes existing SAR data processing functions, and since version 5, the processing capability of KOMPSAT-5 has been added. This paper shows an example of processing the interference technique of KOMPSAT-5 SAR image using S1TBX of SNAP. In the open mine of Tavan Tolgoi in Mongolia, the difference between DEM obtained in KOMPSAT-5 in 2015 and SRTM 1sec DEM obtained in 2000 was analyzed. It was found that the maximum depth of 130 meters was excavated and the height of the accumulated ore is over 70 meters during 15 years. Tidal and topographic InSAR signals were observed in the glacier area near Jangbogo Antarctic Research Station, but SNAP was not able to treat it due to orbit error and DEM error. In addition, several DInSAR images were made in the Iraqi desert region, but many lines appearing in systematic errors were found on coherence images. Stacking for StaMPS application was not possible due to orbit error or program bug. It is expected that SNAP can resolve the problem owing to a surge in users and a very fast upgrade of the software.

A Study on the Distribution and Changes of Sand Dune at the Lower Reach of Duman River, North Korea (두만강 하류 사구의 분포와 변화에 관한 연구)

  • Lee Min-Boo;Kim Nam-Shin;Lee Gwang-Ryul;Han Uk;Jin, Shizhu
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.3 s.114
    • /
    • pp.331-345
    • /
    • 2006
  • This study deals with geomorphological process of the sand dune landform including the distribution and surface environments, characteristics of sediments, origins and moving processes in lower reach and mouth delta of Duman River, Northeast Korea and China. The methodology of the study includes image analysis of Landsat TM(1992.10) and ETM(2000.9) and Spot(2005.4) for analysis of land cover, 2 times field survey for recognition of landform and acquisition of sediments raw data materials, and grain analysis and exoscopy about raw data materials. The geomorphic elements from satellite image analysis are composed of the delta, sand spit, active and stable dune, sand bar and riparian vegetated zone. Results of the grain analysis indicate the sediments originated from marine coastal zone than riverine one. This means that present sand dune not so much reflect present climatic and geomorphic environments. Result of the exoscopy analysis show that ratio of quartz, which is comparatively resistant to environment, is highest as $65{\sim}83%$ out of sediments. But the surface of the $30{\sim}40%$ of mineral grains was coated by yellow-colored stained materials, due to chemical weathering. Some grains show rough skin, looking as acicular, network structure and etching pits, affected by physical and chemical weathering.

Study on Detection for Cochlodinium polykrikoides Red Tide using the GOCI image and Machine Learning Technique (GOCI 영상과 기계학습 기법을 이용한 Cochlodinium polykrikoides 적조 탐지 기법 연구)

  • Unuzaya, Enkhjargal;Bak, Su-Ho;Hwang, Do-Hyun;Jeong, Min-Ji;Kim, Na-Kyeong;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1089-1098
    • /
    • 2020
  • In this study, we propose a method to detect red tide Cochlodinium Polykrikoide using by machine learning and geostationary marine satellite images. To learn the machine learning model, GOCI Level 2 data were used, and the red tide location data of the National Fisheries Research and Development Institute was used. The machine learning model used logistic regression model, decision tree model, and random forest model. As a result of the performance evaluation, compared to the traditional GOCI image-based red tide detection algorithm without machine learning (Son et al., 2012) (75%), it was confirmed that the accuracy was improved by about 13~22%p (88~98%). In addition, as a result of comparing and analyzing the detection performance between machine learning models, the random forest model (98%) showed the highest detection accuracy.It is believed that this machine learning-based red tide detection algorithm can be used to detect red tide early in the future and track and monitor its movement and spread.

Water resources monitoring technique using multi-source satellite image data fusion (다종 위성영상 자료 융합 기반 수자원 모니터링 기술 개발)

  • Lee, Seulchan;Kim, Wanyub;Cho, Seongkeun;Jeon, Hyunho;Choi, Minhae
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.8
    • /
    • pp.497-508
    • /
    • 2023
  • Agricultural reservoirs are crucial structures for water resources monitoring especially in Korea where the resources are seasonally unevenly distributed. Optical and Synthetic Aperture Radar (SAR) satellites, being utilized as tools for monitoring the reservoirs, have unique limitations in that optical sensors are sensitive to weather conditions and SAR sensors are sensitive to noises and multiple scattering over dense vegetations. In this study, we tried to improve water body detection accuracy through optical-SAR data fusion, and quantitatively analyze the complementary effects. We first detected water bodies at Edong, Cheontae reservoir using the Compact Advanced Satellite 500(CAS500), Kompsat-3/3A, and Sentinel-2 derived Normalized Difference Water Index (NDWI), and SAR backscattering coefficient from Sentinel-1 by K-means clustering technique. After that, the improvements in accuracies were analyzed by applying K-means clustering to the 2-D grid space consists of NDWI and SAR. Kompsat-3/3A was found to have the best accuracy (0.98 at both reservoirs), followed by Sentinel-2(0.83 at Edong, 0.97 at Cheontae), Sentinel-1(both 0.93), and CAS500(0.69, 0.78). By applying K-means clustering to the 2-D space at Cheontae reservoir, accuracy of CAS500 was improved around 22%(resulting accuracy: 0.95) with improve in precision (85%) and degradation in recall (14%). Precision of Kompsat-3A (Sentinel-2) was improved 3%(5%), and recall was degraded 4%(7%). More precise water resources monitoring is expected to be possible with developments of high-resolution SAR satellites including CAS500-5, developments of image fusion and water body detection techniques.

Automatic Generation of Land Cover Map Using Residual U-Net (Residual U-Net을 이용한 토지피복지도 자동 제작 연구)

  • Yoo, Su Hong;Lee, Ji Sang;Bae, Jun Su;Sohn, Hong Gyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.5
    • /
    • pp.535-546
    • /
    • 2020
  • Land cover maps are derived from satellite and aerial images by the Ministry of Environment for the entire Korea since 1998. Even with their wide application in many sectors, their usage in research community is limited. The main reason for this is the map compilation cycle varies too much over the different regions. The situation requires us a new and quicker methodology for generating land cover maps. This study was conducted to automatically generate land cover map using aerial ortho-images and Landsat 8 satellite images. The input aerial and Landsat 8 image data were trained by Residual U-Net, one of the deep learning-based segmentation techniques. Study was carried out by dividing three groups. First and second group include part of level-II (medium) categories and third uses group level-III (large) classification category defined in land cover map. In the first group, the results using all 7 classes showed 86.6 % of classification accuracy The other two groups, which include level-II class, showed 71 % of classification accuracy. Based on the results of the study, the deep learning-based research for generating automatic level-III classification was presented.

Optimal Site Selection of Carbon Storage Facility using Satellite Images and GIS (위성영상과 GIS를 활용한 CO2 지중저장 후보지 선정)

  • Hong, Mi-Seon;Sohn, Hong-Gyoo;Jung, Jae-Hoon;Cho, Hyung-Sig;Han, Soo-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.1
    • /
    • pp.43-49
    • /
    • 2011
  • In the face of growing concern about global warming, increasing attention has been focused on the reduction of carbon dioxide emissions. One method to mitigating the release of carbon dioxide is Carbon Capture and Storage (CCS). CCS includes separation of carbon dioxide from industrial emission in plants, transport to a storage site, and long-term isolation in underground. It is necessary to conduct analyses on optimal site selection, surface monitoring, and additional effects by the construction of CCS facility in Gyeongsang basin, Korea. For the optimal site selection, necessary data; geological map, landcover map, digital elevation model, and slope map, were prepared, and a weighted overlay analysis was performed. Then, surface monitoring was performed using high resolution satellite image. As a result, the candidate region was selected inside Gyeongnam for carbon storage. Finally, the related regulations about CCS facility were collected and analyzed for legal question of selected site.

Detection of Decay Leaf Using High-Resolution Satellite Data (고해상도 위성자료를 활용한 마른 잎 탐지)

  • Sim, Suyoung;Jin, Donghyun;Seong, Noh-hun;Lee, Kyeong-sang;Seo, Minji;Choi, Sungwon;Jung, Daeseong;Han, Kyung-soo
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.3
    • /
    • pp.401-410
    • /
    • 2020
  • Recently, many studies have been conducted on the changing phenology on the Korean Peninsula due to global warming. However, because of the geographical characteristics, research on plant season in autumn, which is difficult to measure compared to spring season, is insufficient. In this study, all leaves that maple and fallen leaves were defined as 'Decay leaves' and decay leaf detection was performed based on the Landsat-8 satellite image. The first threshold value of decay leaves was calculated by using NDVI and the secondary threshold value of decay leaves was calculated using by NDWI and the difference of spectral characteristics with green leaves. POD, FAR values were used to verify accuracy of the dry leaf detection algorithm in this study, and the results showed high accuracy with POD of 98.619 and FAR of 1.203.

Modification of IKONOS RPC Using Additional GCP (지상기준점 추가에 의한 IKONOS RPC 갱신)

  • Bang, Ki-In;Jeong, Soo;Kim, Kyung-Ok;Cho, Woo-Sug
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.4 s.22
    • /
    • pp.41-50
    • /
    • 2002
  • RPM is the one of the sensor models which is proposed by Open GIS Consortium (OGC) as image transfer standard. And it is the sensor model for end-users using IKONOS, a commercial pushbroom satellite, imagery which provide about 1m ground resolution. Parameters called RPC which is IKONOS RFM coefficients are serviced to end-users. But if some users try to make additional effort to get rigorous geo-spatial information, it is necessary to apply mathematic or abstract sensor models, because vendors don't offer any ancillary data for physical sensor models such as satellite orbit and navigation. Abstract sensor models such as pushbroom Direct Linear Transform (DLT) require many GCPs well distributed in imagery, and mathematic sensor model such as RFM, polynomials need much more GCPs. Therefore RPC modification using additional a few GCPs is the best solution. In this paper, two methods are proposed to modify RPC. One is method to use pseudo GCPs generated in normalized cubic, and another method uses parameters observations and a few GCPs. Through two methods, we get improvement of accuracy 50% and over.

  • PDF