• Title/Summary/Keyword: Satellite data

Search Result 4,240, Processing Time 0.032 seconds

The Nature of the Tomb Form and the Group Tomb Complex of the Wooden Chamber Tombs with Stone Mound in the Early Silla Phase (신라 전기 적석목곽분의 묘형과 집단복합묘군의 성격)

  • Choi, Byung-Hyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.50 no.4
    • /
    • pp.168-197
    • /
    • 2017
  • This paper considers two aspects of the wooden chamber tombs with stone mound that were constructed in Wolseong North Burial Ground, in Gyeongju: tomb form and the group tomb complex. The basic unit of a wooden chamber tomb with stone mound consisted of a single round mound, covered with an additional earthen layer and surrounded by a circle of protective stones, within which a single wooden chamber was located. The form of a wooden chamber tomb with stone mound could therefore 1) be round, consisting of a single tomb unit, 2) consist of two or more attached tomb units, 3) or consist of multiple attached chambers in a single mound. The single tomb contained the burial of a single individual, and the attached tomb contained two or more individuals who were blood relations or connected by marriage. Multiple attached chambers tombs usually consisted of wooden chamber burials of the lowest rank, and have only been identified in the royal burial area of Wolseong North Burial Ground. At the Jjoksaem Area of Wolseong North Burial Ground, which is currently, under investigation, tombs have been found in small clusters along the slightly raised ground. This is likely the result of small groups of kin relations, upon selecting points along the slightly raised ground as their burial area, having constructed midsized and large single tombs and attached tombs along the axis of the slightly raised ground, which were then surrounded by smaller 'satellite' tombs. It is through this process that the tomb complex of the different groups came to be formed. The tombs of the royal burial area of Wolseong North Burial Ground, including the Daereungwon Tomb Complex, also formed group tomb complexes. Forming the centers of the group tomb complexes of the royal tomb area were huge individual round tombs where the Maripgan rulers were laid to rest or a gourd-shaped dual mound tomb, which was the final resting place of the king and his queen consort. These central tombs were surrounded by large and smaller tombs. Of the individuals that were buried in the group tomb complexes, there would have been individuals that were of equal status or social position, such as husbands and wives or blood relations, but it is unlikely that all of the buried individuals were related by blood, given the significant difference in the sizes of the tombs. It is likely that the individuals buried in the lower ranked tombs included in the group tomb complexes were 'dependents' of the deceased of the central tomb and his or her direct family who maintained a subservient relationship. Such tomb forms and group tomb complexes that can be observed amongst the wooden chamber tombs with stone mounds of Wolseong North Burial Ground provide insights into the nature of the social groups of the Silla center during the Maripgan Period. It is hoped that future studies undertaking a more detailed analysis of the data may make further contributions to unveiling the various aspects of Silla society.

A Study on the Paleotopographic and Structural Analyses of Cherwon Castle in Taebong (태봉 철원도성의 고지형과 구조 분석 연구)

  • HEO, Uihaeng;YANG, Jeongseok
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.2
    • /
    • pp.38-55
    • /
    • 2021
  • Cherwon Castle is located in Pungcheonwon, Cherwon, in the center of the Korean Peninsula. Currently, it is split across the Demilitarized Zone (DMZ) between the two Koreas. It attracts attention as a symbol of inter-Korean reconciliation and as cultural heritage that serves as data in making important policy decisions on the DMZ. Despite its importance, however, there has not been sufficient investigation and research done on Cherwon Castle. This is due to the difficulty involved in investigation and research and is caused by the site's inaccessibility. As a solution, the current investigative methods in satellite and aerial archeology can be applied to interpret and analyze the structure of Cherwon Castle and the features of its inner space zoning. Cherwon Castle was built on the five flat hills that begin in the northern mountainous hills and stretch to the southwest. The inner and outer walls were built mainly on the hilly ridges, and the palace wall was built surrounding a flat site that was created on the middle hill. For each wall, the sites of the old gates, which were erected in various directions , have been identified. They seem to have been built to fit the direction of buildings in the castle and the features of the terrain. The castle was built in a diamond shape. The old sites of the palace and related buildings and landforms related to water drainage were identified. It was verified that the roads and the gates were built to run from east to west in the palace. In the spaces of the palace and the inner castle, flat sites were created to fit different landforms, and building sites were arranged there. Moreover, the contour of a reservoir that is believed to be the old site of a pond has been found; it lies on the vertical extension of the center line that connects the palace and the inner castle. Between the inner castle and the outer castle, few vestiges of old buildings were found, although many flat sites were discovered. Structurally, Cherwon Castle is rotated about nine degrees to the northeast, forming a planar rectangle. The planar structure derives from the castle design that mimics the hilly landform, and the bending of the southwestern wall also attests to the intention of the architects to avoid the wetland. For now, it is impossible to clearly describe the functions and characters of the building sites inside the castle. However, it is believed that the inner castle was marked out for space for the palace and government offices, while the space between the outer and inner castle was reserved as the living space for ordinary people. The presence of the hilly landform diminishes the possibility that a bangri (grid) zoning system existed. For some of the landforms, orderly zoning cannot be ruled out, as flat areas are commonly seen. As surveys have yet to be conducted on the different castles, the time when the walls were built and how they were constructed cannot be known. Still, the claim to that the castle construction and the structuring of inner spaces were inspired by the surrounding landforms is quite compelling.

Relationship Between Perceived Health Status, Future Time Perspective, Health Promoting Behaviors and Quality of Life in the Elderly (노인들이 지각하는 건강상태, 미래전망, 건강증진, 삶의 질의 관계)

  • Yoon, Jung Sik;Ko, Dae Sun;Won, Young Shin
    • 한국노년학
    • /
    • v.36 no.4
    • /
    • pp.1191-1206
    • /
    • 2016
  • The purpose of this study is to investigate the relationship between perceived health status, future time perspective(FTP), health promoting behaviors, and quality of life in the elderly. To this end, the survey was conducted through distributing questionnaires to the elderly people who lived in areas of Seoul or its adjacent satellite cities in their age of 60 or more in 2013. In total, 497 valid responses were collected. The data was analyzed by using a number of analysis methods including confirmatory factor analysis, reliability analysis, frequency analysis, correlation analysis, simple regression analysis, multiple regression analysis, SEM analysis. The findings are as follows. First, health status of the elderly has a significant influence on FTP. Second, health status the elderly has a significant influence on health promoting behavior. Among sub-factors of health status, subjective health status has a significant influence on spiritual growth, nutrition, physical activity, stress and interpersonal relation. Third, health status of the elderly has a significant influence on quality of life. Among sub-factors of health status, subjective health status has a significant influence on physical, social, emotional and economic quality of life. Fifth, FTP of the elderly has a significant influence on quality of life. FTP has a significant influence on physical, social, emotional economic quality of life among the elderly. Sixth, health promoting behavior among the elderly has a significant influence on quality of life. Among sub-factors of health promoting behavior, spiritual growth has a significant influence on physical, social, emotional and economic quality of life. Nutrition has a significant influence on social factor. Health responsibility has a significant influence on emotional quality of life. Physical activity has a significant influence on physical quality of life. Stress has a significant influence on physical, social and economic quality of life. Finally, interpersonal relation has a significant influence on physical and social quality of life.

Observation of Ice Gradient in Cheonji, Baekdu Mountain Using Modified U-Net from Landsat -5/-7/-8 Images (Landsat 위성 영상으로부터 Modified U-Net을 이용한 백두산 천지 얼음변화도 관측)

  • Lee, Eu-Ru;Lee, Ha-Seong;Park, Sun-Cheon;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1691-1707
    • /
    • 2022
  • Cheonji Lake, the caldera of Baekdu Mountain, located on the border of the Korean Peninsula and China, alternates between melting and freezing seasonally. There is a magma chamber beneath Cheonji, and variations in the magma chamber cause volcanic antecedents such as changes in the temperature and water pressure of hot spring water. Consequently, there is an abnormal region in Cheonji where ice melts quicker than in other areas, freezes late even during the freezing period, and has a high-temperature water surface. The abnormal area is a discharge region for hot spring water, and its ice gradient may be used to monitor volcanic activity. However, due to geographical, political and spatial issues, periodic observation of abnormal regions of Cheonji is limited. In this study, the degree of ice change in the optimal region was quantified using a Landsat -5/-7/-8 optical satellite image and a Modified U-Net regression model. From January 22, 1985 to December 8, 2020, the Visible and Near Infrared (VNIR) band of 83 Landsat images including anomalous regions was utilized. Using the relative spectral reflectance of water and ice in the VNIR band, unique data were generated for quantitative ice variability monitoring. To preserve as much information as possible from the visible and near-infrared bands, ice gradient was noticed by applying it to U-Net with two encoders, achieving good prediction accuracy with a Root Mean Square Error (RMSE) of 140 and a correlation value of 0.9968. Since the ice change value can be seen with high precision from Landsat images using Modified U-Net in the future may be utilized as one of the methods to monitor Baekdu Mountain's volcanic activity, and a more specific volcano monitoring system can be built.

Mapping CO2 Emissions Using SNPP/VIIRS Nighttime Light andVegetation Index in the Korean Peninsula (SNPP/VIIRS 야간조도와 식생지수를 활용한 한반도 CO2 배출량 매핑)

  • Sungwoo Park;Daeseong Jung;Jongho Woo;Suyoung Sim;Nayeon Kim;Kyung-Soo Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.247-253
    • /
    • 2023
  • As climate change problem has recently become serious, studies are being conducted to identify carbon dioxide (CO2) emission dynamics based on satellite data to reduce emissions. It is also very important to analyze spatial patterns by estimating and mapping CO2 emissions dynamic. Therefore, in this study, CO2 emissions in the Korean Peninsula from 2013 to 2020 were estimated and mapped. To spatially estimate and map emissions, we use the enhanced vegetation index adjusted nighttime light index, an index that combines nighttime light (NTL) and vegetation index, to map both areas where NTL is observed and areas where NTL is not observed. In order to spatially estimate and map CO2 emissions, the total annual emissions of the Korean Peninsula were calculated, resulting in an increase of 11% from 2013 to 2017 and a decrease of 13% from 2017 to 2020. As a result of the mapping, it was confirmed that the spatial pattern of CO2 emissions in the Korean Peninsula were concentrated in urban areas. After being divided into 17 regions, which included the downtown area, the metropolitan area accounted for roughly 40% of CO2 emissions in the Korean Peninsula. The region that exhibited the most significant change from 2013 to 2020 was Sejong City, showing a 96% increase.

Comparative Study on the Carbon Stock Changes Measurement Methodologies of Perennial Woody Crops-focusing on Overseas Cases (다년생 목본작물의 탄소축적 변화량 산정방법론 비교 연구-해외사례를 중심으로)

  • Hae-In Lee;Yong-Ju Lee;Kyeong-Hak Lee;Chang-Bae Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.258-266
    • /
    • 2023
  • This study analyzed methodologies for estimating carbon stocks of perennial woody crops and the research cases in overseas countries. As a result, we found that Australia, Bulgaria, Canada, and Japan are using the stock-difference method, while Austria, Denmark, and Germany are estimating the change in the carbon stock based on the gain-loss method. In some overseas countries, the researches were conducted on estimating the carbon stock change using image data as tier 3 phase beyond the research developing country-specific factors as tier 2 phase. In South Korea, convergence studies as the third stage were conducted in forestry field, but advanced research in the agricultural field is at the beginning stage. Based on these results, we suggest directions for the following four future researches: 1) securing national-specific factors related to emissions and removals in the agricultural field through the development of allometric equation and carbon conversion factors for perennial woody crops to improve the completeness of emission and removals statistics, 2) implementing policy studies on the cultivation area calculation refinement with fruit tree-biomass-based maturity, 3) developing a more advanced estimation technique for perennial woody crops in the agricultural sector using allometric equation and remote sensing techniques based on the agricultural and forestry satellite scheduled to be launched in 2025, and to establish a matrix and monitoring system for perennial woody crop cultivation areas in the agricultural sector, Lastly, 4) estimating soil carbon stocks change, which is currently estimated by treating all agricultural areas as one, by sub-land classification to implement a dynamic carbon cycle model. This study suggests a detailed guideline and advanced methods of carbon stock change calculation for perennial woody crops, which supports 2050 Carbon Neutral Strategy of Ministry of Agriculture, Food, and Rural Affairs and activate related research in agricultural sector.

Gap-Filling of Sentinel-2 NDVI Using Sentinel-1 Radar Vegetation Indices and AutoML (Sentinel-1 레이더 식생지수와 AutoML을 이용한 Sentinel-2 NDVI 결측화소 복원)

  • Youjeong Youn;Jonggu Kang;Seoyeon Kim;Yemin Jeong;Soyeon Choi;Yungyo Im;Youngmin Seo;Myoungsoo Won;Junghwa Chun;Kyungmin Kim;Keunchang Jang;Joongbin Lim;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1341-1352
    • /
    • 2023
  • The normalized difference vegetation index (NDVI) derived from satellite images is a crucial tool to monitor forests and agriculture for broad areas because the periodic acquisition of the data is ensured. However, optical sensor-based vegetation indices(VI) are not accessible in some areas covered by clouds. This paper presented a synthetic aperture radar (SAR) based approach to retrieval of the optical sensor-based NDVI using machine learning. SAR system can observe the land surface day and night in all weather conditions. Radar vegetation indices (RVI) from the Sentinel-1 vertical-vertical (VV) and vertical-horizontal (VH) polarizations, surface elevation, and air temperature are used as the input features for an automated machine learning (AutoML) model to conduct the gap-filling of the Sentinel-2 NDVI. The mean bias error (MAE) was 7.214E-05, and the correlation coefficient (CC) was 0.878, demonstrating the feasibility of the proposed method. This approach can be applied to gap-free nationwide NDVI construction using Sentinel-1 and Sentinel-2 images for environmental monitoring and resource management.

Can the Expansion of Forest Roads Prevent Large Forest Fires? (산림 내 도로의 확대는 대형산불을 막을 수 있는가?)

  • Suk-Hwan Hong;Mi-Yeon An;Jung-Suk Hwang
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.6
    • /
    • pp.439-449
    • /
    • 2023
  • This study was conducted to verify the role of forest roads in the extinction of large forest fires in Korea. The study area was the forest fire-damaged area of Gangneung City, Gangwon Special Self-Governing Province, in April 2023, which is one of the areas with the highest road density among the major forest fires that have occurred so far. The scope of the forest fire damage area was confirmed through on-site survey, and the intensity of the fire was carried out through Sentinel-2 satellite imagery analysis. After that, the relationship between the damage range and intensity and the forest road was examined. About 59.6 km of roads were built within 50 m from the boundary of the forest fire damage area, which can easily access the entire 149.1 ha of forest fire damaged area. The road density is as high as 168.9 m/ha. All forests that were fragmented by roads were fragmented into 83 places, and all of these forests could be judged to have spread by spotting fire. As a result of analyzing the distribution of damage intensity by distance from the road to see the extent of damage according to the ease of access of fire extinguishing vehicles, it was confirmed that the proportion of areas with low-intensity damage has increased sharply even from 75 m or more away from the road. The results of analyzing the distribution of damage intensity by altitude to see the extent of damage according to the ease of access of fire extinguishing showed that the proportion of areas with low-intensity damage increased as the altitude increased, while the proportion of areas with damage of more than strong intensity decreased as the altitude increased. It was confirmed that there is no data that roads inside or adjacent to forests in the forest fire area of Gangneung City are effective in extinguishing forest fires. These results are contrary to the logic that increasing the road density in forests is effective in extinguishing forest fires. In the case of this fire area in Gangneung City, the road density is 43 times higher than the current road density in Korea claimed by the Korea Forest Service of 3.9 m/ha. This study suggests that roads can be a hindrance to extinguishing forest fires.

Comparative study of flood detection methodologies using Sentinel-1 satellite imagery (Sentinel-1 위성 영상을 활용한 침수 탐지 기법 방법론 비교 연구)

  • Lee, Sungwoo;Kim, Wanyub;Lee, Seulchan;Jeong, Hagyu;Park, Jongsoo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.181-193
    • /
    • 2024
  • The increasing atmospheric imbalance caused by climate change leads to an elevation in precipitation, resulting in a heightened frequency of flooding. Consequently, there is a growing need for technology to detect and monitor these occurrences, especially as the frequency of flooding events rises. To minimize flood damage, continuous monitoring is essential, and flood areas can be detected by the Synthetic Aperture Radar (SAR) imagery, which is not affected by climate conditions. The observed data undergoes a preprocessing step, utilizing a median filter to reduce noise. Classification techniques were employed to classify water bodies and non-water bodies, with the aim of evaluating the effectiveness of each method in flood detection. In this study, the Otsu method and Support Vector Machine (SVM) technique were utilized for the classification of water bodies and non-water bodies. The overall performance of the models was assessed using a Confusion Matrix. The suitability of flood detection was evaluated by comparing the Otsu method, an optimal threshold-based classifier, with SVM, a machine learning technique that minimizes misclassifications through training. The Otsu method demonstrated suitability in delineating boundaries between water and non-water bodies but exhibited a higher rate of misclassifications due to the influence of mixed substances. Conversely, the use of SVM resulted in a lower false positive rate and proved less sensitive to mixed substances. Consequently, SVM exhibited higher accuracy under conditions excluding flooding. While the Otsu method showed slightly higher accuracy in flood conditions compared to SVM, the difference in accuracy was less than 5% (Otsu: 0.93, SVM: 0.90). However, in pre-flooding and post-flooding conditions, the accuracy difference was more than 15%, indicating that SVM is more suitable for water body and flood detection (Otsu: 0.77, SVM: 0.92). Based on the findings of this study, it is anticipated that more accurate detection of water bodies and floods could contribute to minimizing flood-related damages and losses.

Estimation of SCS Runoff Curve Number and Hydrograph by Using Highly Detailed Soil Map(1:5,000) in a Small Watershed, Sosu-myeon, Goesan-gun (SCS-CN 산정을 위한 수치세부정밀토양도 활용과 괴산군 소수면 소유역의 물 유출량 평가)

  • Hong, Suk-Young;Jung, Kang-Ho;Choi, Chol-Uong;Jang, Min-Won;Kim, Yi-Hyun;Sonn, Yeon-Kyu;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.363-373
    • /
    • 2010
  • "Curve number" (CN) indicates the runoff potential of an area. The US Soil Conservation Service (SCS)'s CN method is a simple, widely used, and efficient method for estimating the runoff from a rainfall event in a particular area, especially in ungauged basins. The use of soil maps requested from end-users was dominant up to about 80% of total use for estimating CN based rainfall-runoff. This study introduce the use of soil maps with respect to hydrologic and watershed management focused on hydrologic soil group and a case study resulted in assessing effective rainfall and runoff hydrograph based on SCS-CN method in a small watershed. The ratio of distribution areas for hydrologic soil group based on detailed soil map (1:25,000) of Korea were 42.2% (A), 29.4% (B), 18.5% (C), and 9.9% (D) for HSG 1995, and 35.1% (A), 15.7% (B), 5.5% (C), and 43.7% (D) for HSG 2006, respectively. The ratio of D group in HSG 2006 accounted for 43.7% of the total and 34.1% reclassified from A, B, and C groups of HSG 1995. Similarity between HSG 1995 and 2006 was about 55%. Our study area was located in Sosu-myeon, Goesan-gun including an approx. 44 $km^2$-catchment, Chungchungbuk-do. We used a digital elevation model (DEM) to delineate the catchments. The soils were classified into 4 hydrologic soil groups on the basis of measured infiltration rate and a model of the representative soils of the study area reported by Jung et al. 2006. Digital soil maps (1:5,000) were used for classifying hydrologic soil groups on the basis of soil series unit. Using high resolution satellite images, we delineated the boundary of each field or other parcel on computer screen, then surveyed the land use and cover in each. We calculated CN for each and used those data and a land use and cover map and a hydrologic soil map to estimate runoff. CN values, which are ranged from 0 (no runoff) to 100 (all precipitation runs off), of the catchment were 73 by HSG 1995 and 79 by HSG 2006, respectively. Each runoff response, peak runoff and time-to-peak, was examined using the SCS triangular synthetic unit hydrograph, and the results of HSG 2006 showed better agreement with the field observed data than those with use of HSG 1995.