• Title/Summary/Keyword: Satellite data

Search Result 4,262, Processing Time 0.03 seconds

Performance enhancement of GSO FSS TCP/IP network (정지위성 TCP/IP 네트워크 전송 성능 향상)

  • Hong, Wan-Pyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2B
    • /
    • pp.118-123
    • /
    • 2007
  • This paper studied the transmission control protocol over IP network to enhance the performance of the GSO satellite communication networks. The focus of this study is how to reduce the long round trip time and the transmission data rates over satellite link in the bidirectional satellite network. To do it, this study applied the caching and spoofing technology. The spoofing technology is used to reduce the required time for the link connection during communication. The caching technology is to improve the transmission bandwidth efficiency in the high transmission data rate link The tests and measurements in this study was performed in the commercial GSO communication satellite network and the terrestrial Internet network. The results of this paper show that the studied protocol in this paper highly enhance the performance of the bidirectional satellite communication network compare to the using TCP/IP satellite network protocol.

Atmospheric Effects during Solar Storms

  • Lee, J.H.;Choi, G.H.;Kim, J.W.;Seo, S.B.;Lee, S.H.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.840-842
    • /
    • 2003
  • Recent satellite data have revealed a correlation between the Sun’s activities and the Earth’s atmosphere . Many scientists have been conjectured a more direct connections between solar variability and the Earth’s atmosphere from satellite data analysis. During solar storms, more energetic particles reach the Earth’s atmosphere and this phenomenon have effects on the Earth’s atmospheric environment. Consequently, scientists suggest that these variations will affect a global climate change. In this study, we investigate the confirmative research results of atmospheric effects due to solar activities, especially solar storms.

  • PDF

Point Ahead Angle(PAA) Estimation and a Control Algorithm for Satellite-Pointing of the Ground Terminal in Satellite-to-Ground Optical Communication (위성-지상간 광통신용 지상단말기의 위성 지향을 위한 PAA 도출 및 제어 알고리즘)

  • Taehyun Yoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.329-337
    • /
    • 2024
  • Free-space optical communication technology enables the high-speed data transmission and excellent anti-jamming security. We conduct research on satellite-to-ground free-space optical communication links for high-speed transmission of large-capacity surveillance and reconnaissance data. Since the satellite continues to move along its orbit while the optical signal is transmitted between the satellite and the ground, the pointing angle of the beam from the ground terminal needs to be corrected by Point Ahead Angle(PAA) so that the transmitted light reaches the expected location of the satellite. In this paper, we present the algorithm for PAA estimation and control.

Estimation of Coastal Suspended Sediment Concentration using Satellite Data and Oceanic In-Situ Measurements

  • Lee, Min-Sun;Park, Kyung-Ae;Chung, Jong-Yul;Ahn, Yu-Hwan;Moon, Jeong-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.677-692
    • /
    • 2011
  • Suspended sediment is an important oceanic variable for monitoring changes in coastal environment related to physical and biogeochemical processes. In order to estimate suspended sediment concentration (SSC) from satellite data, we derived SSC coefficients by fitting satellite remote sensing reflectances to in-situ suspended sediment measurements. To collect in-situ suspended sediment, we conducted ship cruises at 16 different locations three times for the periods of Sep.-November 2009 and Jul. 2010 at the passing time of Landsat $ETM_+$. Satellite data and in-situ data measured by spectroradiometers were converted to remote sensing reflectances ($R_{rs}$). Statistical approaches proved that the exponential formula using a single band of $R_{rs}$(565) was the most appropriate equation for the estimation of SSC in this study. Satellite suspended sediment using the newly-derived coefficients showed a good agreement with insitu suspended sediment with an Root Mean Square (RMS) error of 1-3 g/$m^3$. Satellite-observed SSCs tended to be overestimated at shallow depths due to bottom reflection presumably. This implies that the satellite-based SSCs should be carefully understood at the shallow coastal regions. Nevertheless, the satellite-derived SSCs based on the derived SSC coefficients, for the most cases, reasonably coincided with the pattern of in-situ suspended sediment measurements in the study region.

Establishment of Geometric Correction Data using LANDSAT Satellite Images over the Korean Peninsular (한반도지역 LANDSAT 위성영상의 기하보정 데이터 구축)

  • Yoon, Geun-Won;Park, Jeong-Ho;Chae, Gee-Ju;Park, Jong-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.1
    • /
    • pp.98-106
    • /
    • 2003
  • Because satellite images have the advantage of high resolution, multi-spectral, revisit and wide swath characteristics, it is increased to utilize satellite image and get information little by little in nowadays. In order to utilize remote sensed images effectively, it is necessary to process satellite images through many processing steps. Among them, geometric correction is essential step for satellite image processing. In this study, we constructed geometric correction data using LANDSAT satellite images. First, we extracted GCPs from maps and constructed database over the Korean peninsular. Second, LANDSAT satellite images, 165 scenes were corrected geometrically using GCP database. Finally, we made 7 mosaic images by means of geometric correction images over Korean peninsular. We think that constructed geometric correction data will be used for many application fields as basic data.

  • PDF

Evaluation of GSICS Correction for COMS/MI Visible Channel Using S-NPP/VIIRS

  • Jin, Donghyun;Lee, Soobong;Lee, Seonyoung;Jung, Daeseong;Sim, Suyoung;Huh, Morang;Han, Kyung-soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.169-176
    • /
    • 2021
  • The Global Space-based Inter-Calibration System (GSICS) is an international partnership sponsored by World Meteorological Organization (WMO) to continue and improve climate monitoring and to ensure consistent accuracy between observation data from meteorological satellites operating around the world. The objective for GSICS is to inter-calibration from pairs of satellites observations, which includes direct comparison of collocated Geostationary Earth Orbit (GEO)-Low Earth Orbit (LEO) observations. One of the GSICS inter-calibration methods, the Ray-matching technique, is a surrogate approach that uses matched, co-angled and co-located pixels to transfer the calibration from a well calibrated satellite sensor to another sensor. In Korea, the first GEO satellite, Communication Ocean and Meteorological Satellite (COMS), is used to participate in the GSICS program. The National Meteorological Satellite Center (NMSC), which operated COMS/MI, calculated the Radiative Transfer Model (RTM)-based GSICS coefficient coefficients. The L1P reproduced through GSICS correction coefficient showed lower RMSE and Bias than L1B without GSICS correction coefficient applied. The calculation cycles of the GSICS correction coefficients for COMS/MI visible channel are provided annual and diurnal (2, 5, 10, 14-day), but long-term evaluation according to these cycles was not performed. The purpose of this paper is to perform evaluation depending on the annual/diurnal cycles of COMS/MI GSICS correction coefficients based on the ray-matching technique using Suomi-NPP/Visible Infrared Imaging Radiometer Suite (VIIRS) data as reference data. As a result of evaluation, the diurnal cycle had a higher coincidence rate with the reference data than the annual cycle, and the 14-day diurnal cycle was the most suitable for use as the GSICS correction coefficient.

KOMPSAT-2 MSC DCSU Operational Concept

  • Lee, Jong-Tae;Lee, Sang-Gyu;Lee, Sang-Taek
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.821-826
    • /
    • 2002
  • The KOMPSAT-2 DCSU(the data compression & storage unit) performs the acquisition of image data from cameras, the compression with requested compression rate, the storage with specified file ID on the mission command and the distribution to the assigned DLS(Data Link System) channels per the mission and operation requirements. The worldwide observation using the MSC is able to be achieved by this DCSU's behavior. This paper presents the features of KOMPSAT-2 DCSU and provides proper ground operation concept after launch.

  • PDF

Correlation Between the “seeing FWHM” of Satellite Optical Observations and Meteorological Data at the OWL-Net Station, Mongolia

  • Bae, Young-Ho;Jo, Jung Hyun;Yim, Hong-Suh;Park, Young-Sik;Park, Sun-Youp;Moon, Hong Kyu;Choi, Young-Jun;Jang, Hyun-Jung;Roh, Dong-Goo;Choi, Jin;Park, Maru;Cho, Sungki;Kim, Myung-Jin;Choi, Eun-Jung;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.137-146
    • /
    • 2016
  • The correlation between meteorological data collected at the optical wide-field patrol network (OWL-Net) Station No. 1 and the seeing of satellite optical observation data was analyzed. Meteorological data and satellite optical observation data from June 2014 to November 2015 were analyzed. The analyzed meteorological data were the outdoor air temperature, relative humidity, wind speed, and cloud index data, and the analyzed satellite optical observation data were the seeing full-width at half-maximum (FWHM) data. The annual meteorological pattern for Mongolia was analyzed by collecting meteorological data over four seasons, with data collection beginning after the installation and initial set-up of the OWL-Net Station No. 1 in Mongolia. A comparison of the meteorological data and the seeing of the satellite optical observation data showed that the seeing degrades as the wind strength increases and as the cloud cover decreases. This finding is explained by the bias effect, which is caused by the fact that the number of images taken on the less cloudy days was relatively small. The seeing FWHM showed no clear correlation with either temperature or relative humidity.

Optimal Design of Superframe Pattern for DVB-RCS Return Link

  • Lee, Ki-Dong;Cho, Yong-Hoon;Lee, Seung-Joon;Lee, Ho-Jin
    • ETRI Journal
    • /
    • v.24 no.3
    • /
    • pp.251-254
    • /
    • 2002
  • We developed a method for optimal superframe design in the multi-frequency time division multiple access (MF-TDMA) return-link of a satellite multimedia interactive network called a digital video broadcasting return channel over satellite (DVB-RCS) sub-network. To find the optimal superframe pattern with the maximum data throughput, we formulated the design problem as a non-linear combinatorial optimization problem. We also devised the proposed simple method so that it would have field applicability for improving radio resource utilization in the MF-TDMA return link.

  • PDF

Power management analysis of LEO small satellite (저 궤도 소형위성의 전력 운용 분석)

  • Choi, Jae-Dong;Lee, Im-Pyeong;Choi, Soon-Dal
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.198-201
    • /
    • 1995
  • The overall design criteria for the optimal design of a small LEO satellite power system are described in summary. The analysis result of the KITSAT-I whole orbit data suggests the efficient power opertion for KITSAT-I and also gives some crutial information for developing a new satellite power system.

  • PDF